

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ½
Linear & Coordinate Geometry [1.1]

Test Solutions

17 Marks. 1 Minute Reading. 17 Minutes Writing.

Results:

Test Questions	/17
Extension	/4

Section A: Test Questions (17 Marks)

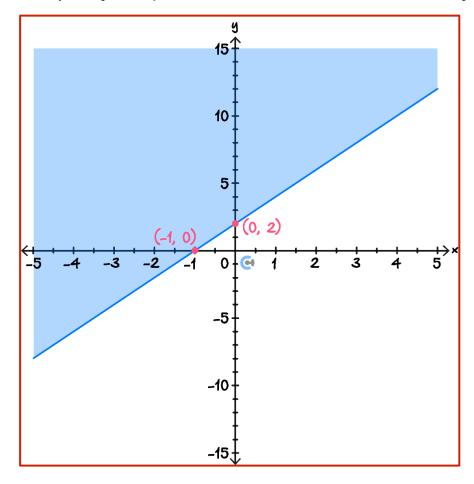
INSTRUCTION: 17 Marks. 17 Minutes Writing.

Question 1 (4 marks)

Tick whether the following statements are true or false.

	Question	True	False
a.	The inequality $3x + 5 \le 9$ has a unique solution.		\
b.	Midpoint of the two points is always the average of the x and y -values.	/	
c.	Distance between two points is derived from Pythagoras theorem.	✓	
d.	Reflecting a point around the $y = 4$ line changes the x-value.		\
e.	The vertical distance between two points is the difference in their x -values.		<
f.	The angle measured clockwise between the line and the x -axis is given by $\tan (\theta)$.		>
g.	For two lines to have infinite solutions, their gradient and <i>y</i> -intercept have to be the same measured clockwise.		\
h.	The simultaneous equations $2x - 4y = 4$ and $-4x + 8y = -8$ have infinitely many solutions.	✓	

Question 2 (5 marks)


a. Solve the equation 2x - 3 = 5x + 6 for x. (1 mark)

$$3x = -9 \implies x = -3$$

b. Solve the inequality 5 - 2x > 3x - 12 for x. (1 mark)

$$17 > 5x \implies x < \frac{17}{5}.$$

c. Sketch line governed by the equation 2y - 4x = 4 on the axis below. Label all axes intercepts. (2 marks)

d. Shade the region described by $2y \ge 4x + 4$ on the axis above. (1 mark)

Question	3	(3	marks)	
Question	•	v	marks	

Given that the distance between point A (2,1) and point B (k, 4) is 5.0 units, find the possible values of k.

Solve $\left[\sqrt{(k-2)^2 + (4-1)^2} = 5, k \right]$

 $\{\,\{k \rightarrow \text{-2}\,\}\,,\,\,\{\,k \rightarrow 6\,\}\,\}$

Space for Personal Notes

Question 4 (5 marks)

Consider the simultaneous linear equations:

$$\frac{3m}{8}x + 2y = m - 1$$

$$3x + my = 6$$

Where m is a real constant.

a. Find the values of m for which there is a unique solution to the simultaneous equations. (2 marks)

Gradients are ratios of co-efficients of $x \& y \rightarrow \begin{cases} kx - 3y = k + 3 \\ 4x + (k = 7)y = 1 \end{cases}$

Constants are co-efficients of = RHS

expand
$$\left(\operatorname{solve}\left(\frac{3 \cdot m}{8} \cdot x + 2 \cdot y = m - 1, y\right)\right)$$

$$y = \frac{-3 \cdot m \cdot x}{16} + \frac{m}{2} - \frac{1}{2}$$
expand $\left(\operatorname{solve}\left(3 \cdot x + m \cdot y = 6, y\right)\right)$

$$y = \frac{6}{3 \cdot x}$$

$$m \neq -4,4$$

b. Find the value of m for which there are infinitely many solutions. (2 marks)

CONTOUREDUCATION

c.	Find the	value	of m	for	which	there	are i	no	solutions.	(1	mark)
~.	1 1114 1110	, arac	01 110	101	*******	uicic	ui c	110	ooiations.	(-	1114111)

Space for Personal Notes

Section B: Extension Test Questions (4 Marks)

INSTRUCTION: 4 Marks. 6 Minutes Writing.

Question 5 (4 marks)

Sam is standing at point A(3,5) and needs to get to a walking path described by the line y = 3x - 2. To minimize his effort, he wants to travel the shortest possible distance to the path. What is the shortest distance Sam needs to travel?

a. Find the line perpendicular to y = 3x - 2 that passes through A(3, 5). (2 marks)

Line had gradient $-\frac{1}{3}$ and through point (3,5). Therefore,

$$y - 5 = -\frac{1}{3}(x - 3)$$
$$y = -\frac{1}{3}x + 6$$

b. Find the intersection of the line y = 3x - 2 and the line from **part a**. (1 mark)

$$-\frac{1}{3}x + 6 = 3x - 2 \implies \frac{10}{3}x = 8 \implies x = \frac{12}{5}.$$
 Therefore point is
$$\left(\frac{12}{5}, \frac{26}{5}\right)$$

c. Hence, find the shortest distance Sam can travel to reach the walking path. (1 mark)

We want the distance between A(3,5) and $\left(\frac{12}{5},\frac{26}{5}\right)$.

$$d = \sqrt{\left(\frac{3}{5}\right)^2 + \left(\frac{1}{5}\right)^2} = \sqrt{\frac{10}{25}} = \frac{\sqrt{10}}{5}.$$

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45+ raw scores and 99+ ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-methods-consult-2025

