

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ AOS 1 Revision [1.0]

**Contour Check Part 1** 





### **Contour Check**

## [1.1] - Linear & Coordinate Geometry (Checkpoints)

- [1.1.1] Solve and Graph Linear Equations and Inequalities
  Pg 3-5
- [1.1.2] Find the Midpoint and DistanceBetween Two Points or FunctionsPg 6-7
- [1.1.3] Find Parallel andPerpendicular LinesPg 8-9
- ► [1.1.4] Finding the Angle Between a Line and the x-axis or Between Two Lines
   Pg 10-11
- [1.1.5] Find the Unknown Value For a System of Linear Equations
  Pg 12-15

### [1.2] - Linear & Coordinate Geometry Exam Skills (Checkpoints)

- [1.2.1] Applying Midpoint to Find Reflected Points
  Pg 16-17
- [1.2.2] Find Vertical and Horizontal DistanceBetween FunctionsPg 18-19
- [1.2.3] Finding Distance Between a Point and a FunctionPg 20-21

### [1.3] - Quadratics (Checkpoints)

- [1.3.1] Rewriting Quadratics in Different Forms Pg 22-25
- [1.3.2] Find Solutions and Number of Solutions to Quadratic Equations Pg 26-29
- [1.3.3] Graph and Find Rules From the Graph of Quadratic EquationsPg 30-33
- [1.3.4] Solving Quadratic Inequalities and Hidden Quadratics
   Pg 34-36

### [1.4] - Quadratics Exam Skills (Checkpoints)

- ► [1.4.1] Find Turning Point Form Using Turning Points Pg 37-38
- [1.4.2] Apply Quadratics to Model a ScenarioPg 39-40
- [1.4.3] Apply Family of Functions to Find an Unknown of FunctionPg 41-42
- [1.4.4] Harder Quadratic
  Inequalities
  Pg 43-44

#### [1.5] - Polynomials (Checkpoints)

- [1.5.1] Identify the Properties of Polynomials and Solve Long Division
   Pg 45-47
- [1.5.2] Apply Reminder and Factor Theorem to Find Reminders and Factors Pg 48-51
- [1.5.3] Find Factored Form of Polynomials
  Pg 52-54
- [1.5.4] Graph Factored and Unfactored Polynomials Pg 55-61

#### [1.6] - Polynomials Exam Skills (Checkpoints)

- [1.6.1] Solve PolynomialInequalitiesPg 62-65
- [1.6.2] Solve Number of SolutionProblemsPg 66-70
- ► [1.6.3] Apply Bisection Method to Approximate *x*-Intercepts Pg 71-72

### [1.1 - 1.6] - Exam 1 Overall Pg 73-90

### Section A: [1.1] - Linear & Coordinate Geometry (Checkpoints)

### <u>Sub-Section [1.1.1]</u>: Solve and Graph Linear Equations and Inequalities

### **Question 1**

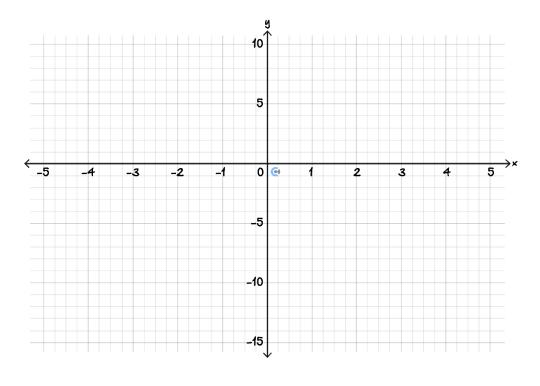
D

Solve the following linear equations and inequalities for x:

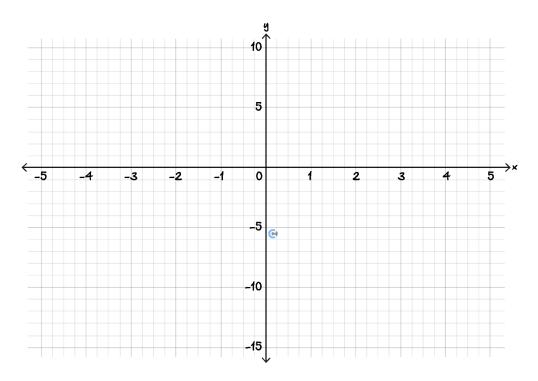
- **a.** 3x + 8 = 20
- **b.** 2x + 6 = 3(x 2)
- c. 5x + 2 < 4x + 10

#### **Question 2**




Solve the following linear equations and inequalities for x:

**a.** 3x + 2 = 12x + 3


- **b.**  $\frac{2x+3}{3} > 3(x-5)$
- $\mathbf{c.} \quad \frac{5x+3}{4} \le 10x + 8$



a. Sketch the line governed by the equation 2y - 4x = -8 on the axis below. Label all axes intercepts.



**b.** Shade the region governed by the equation 2y - 4x > -8 on the axis below.



### **Question 4**

الالال

Solve the inequality  $\frac{1}{4}(5x - 3) \ge 2x + 8$  for x.





## <u>Sub-Section [1.1.2]</u>: Find The Midpoint and Distance Between Two Points or Functions

### **Question 5**



**a.** Find the midpoint of (1, -3) and (6, -10).

**b.** The points (a, b) and (3, 4) have a midpoint (2, 3). Find the values of a and b.

### **Question 6**



**a.** Find the distance between points (2,5) and (5,2).

**b.** The curve  $y = (x - 1)^2 + k$  and the line y = 3 has a minimum vertical distance of 4. Find the value of k.

#### **Space for Personal Notes**

MM12 [1.0] - AOS 1 Revision - Contour Check Part 1





| Question 7                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------|
| The distance between the point $(2, 2)$ and a point $P$ on the line $y = 2x + 2$ is 4 units. Find all possible coordinates for $P$ . |
|                                                                                                                                      |
|                                                                                                                                      |
| <del></del>                                                                                                                          |
|                                                                                                                                      |
|                                                                                                                                      |
|                                                                                                                                      |
|                                                                                                                                      |
|                                                                                                                                      |
|                                                                                                                                      |
| Question 8                                                                                                                           |
| The distance between the point (1, 2) and a point $P$ on the line $y = 3x - 1$ is 4 units. Find all possible coordinates for $P$ .   |
|                                                                                                                                      |
|                                                                                                                                      |
|                                                                                                                                      |
| - <del></del>                                                                                                                        |
|                                                                                                                                      |
|                                                                                                                                      |
|                                                                                                                                      |
| Space for Personal Notes                                                                                                             |





### Sub-Section [1.1.3]: Find Parallel and Perpendicular Lines

### **Question 9**



State whether the following lines are parallel or perpendicular:

- **a.** y = 3x + 1 and y = 3x + 3
- **b.** y = 2x + 3 and  $y = -\frac{1}{2}x + 2$

### **Question 10**



Find the equation of the line that is parallel to the line y = 2x + 1 and passes through the point (5, 2).



| Question 11          |                          |                           |                   |                        |      |
|----------------------|--------------------------|---------------------------|-------------------|------------------------|------|
| Find the equation of | the line that is perpend | licular to $y = 3x$       | + 6 and passes th | rough the point (6, 3) |      |
|                      |                          |                           |                   |                        |      |
|                      |                          |                           |                   |                        |      |
|                      |                          |                           |                   |                        |      |
|                      |                          |                           |                   |                        |      |
|                      |                          |                           |                   |                        |      |
|                      |                          |                           |                   |                        | 1111 |
| Question 12          |                          |                           |                   |                        | עעע  |
| Find the equation of | the line that is perpend | dicular to $y = \sqrt{3}$ | 3x + 1 and passes | through the point (2,  | 4).  |
|                      |                          |                           |                   |                        |      |
|                      |                          |                           |                   |                        |      |
|                      |                          |                           |                   |                        |      |
|                      |                          |                           |                   |                        | ·    |
|                      |                          |                           |                   |                        |      |
|                      |                          |                           |                   |                        |      |
| Space for Personal   | Notes                    |                           |                   |                        |      |
|                      |                          |                           |                   |                        |      |
|                      |                          |                           |                   |                        |      |
|                      |                          |                           |                   |                        |      |
|                      |                          |                           |                   |                        |      |
|                      |                          |                           |                   |                        |      |
|                      |                          |                           |                   |                        |      |
|                      |                          |                           |                   |                        |      |
|                      |                          |                           |                   |                        |      |







## <u>Sub-Section [1.1.4]</u>: Finding The Angle Between a Line and the *x*-axis or Between Two Lines

| Question 13                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------|
| Find the angle that $y = -x + 1$ makes with the positive direction of the x-axis.                                                              |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
| Question 14                                                                                                                                    |
| A line that makes an angle of $30^{\circ}$ with the positive <i>x</i> -axis passes through the point $(1, 1)$ . Find the equation of the line. |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
| Space for Personal Notes                                                                                                                       |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |
|                                                                                                                                                |



| Question 15                                           |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                    |
|-------------------------------------------------------|------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|
| It is known that the values of $m$ .                  | lines $y = mx + 3$ and | and y = 4x - 2 make         | an angle of 45° w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | when they intersec | ct. Find all possi |
| values of m.                                          |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                    |
|                                                       |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                    |
|                                                       |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                    |
|                                                       |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                    |
|                                                       |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                    |
|                                                       |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                    |
|                                                       |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                    |
|                                                       |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                    |
|                                                       |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                    |
|                                                       |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                    |
|                                                       |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                    |
|                                                       | e made between the li  | ines $y = \sqrt{3}x + 1$ ar | $\text{ad } y = \frac{x}{-} - 1. \text{ Gi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ive your answer i  | in degrees         |
| Question 16  Find the acute angle correct to two deci |                        | ines $y = \sqrt{3}x + 1$ ar | $\text{ad } y = \frac{x}{\sqrt{3}} - 1. \text{ Gi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ive your answer i  | in degrees         |
| Find the acute angl                                   |                        | ines $y = \sqrt{3}x + 1$ ar | $\text{ad } y = \frac{x}{\sqrt{3}} - 1. \text{ Gi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ive your answer i  | in degrees         |
| Find the acute angl                                   |                        | ines $y = \sqrt{3}x + 1$ ar | $\int_{0}^{\infty} dy = \frac{x}{\sqrt{3}} - 1. \text{ Given } x = \frac{x}{\sqrt{3}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ive your answer i  | in degrees         |
| Find the acute angl                                   |                        | ines $y = \sqrt{3}x + 1$ ar | $\int_{0}^{\infty} dy = \frac{x}{\sqrt{3}} - 1. Gi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ive your answer i  | in degrees         |
| Find the acute angl                                   |                        | ines $y = \sqrt{3}x + 1$ ar | and $y = \frac{x}{\sqrt{3}} - 1$ . Gi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ive your answer i  | in degrees         |
| Find the acute angl                                   |                        | ines $y = \sqrt{3}x + 1$ ar | $\text{and } y = \frac{x}{\sqrt{3}} - 1. \text{ Gi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ive your answer i  | in degrees         |
| Find the acute angle correct to two deci              | nal places.            | ines $y = \sqrt{3}x + 1$ ar | $\int dy = \frac{x}{\sqrt{3}} - 1. \text{ Given } dy = \frac{x}{\sqrt{3}} - \frac{1}{\sqrt{3}} = \frac{x}{\sqrt{3}} = \frac{x}{\sqrt{3}} - \frac{1}{\sqrt{3}} = \frac{x}{\sqrt{3}} = x$ | ive your answer i  | in degrees         |
| Find the acute angl                                   | nal places.            | ines $y = \sqrt{3}x + 1$ ar | $\int \int $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ive your answer i  | in degrees         |
| Find the acute angle correct to two deci              | nal places.            | ines $y = \sqrt{3}x + 1$ ar | and $y = \frac{x}{\sqrt{3}} - 1$ . Given the following section of the sect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ive your answer i  | in degrees         |
| Find the acute angle correct to two deci              | nal places.            | ines $y = \sqrt{3}x + 1$ ar | and $y = \frac{x}{\sqrt{3}} - 1$ . Given the following section of the sect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ive your answer i  | in degrees         |
| Find the acute angle correct to two deci              | nal places.            | ines $y = \sqrt{3}x + 1$ ar | $\int_{0}^{\infty} dy = \frac{x}{\sqrt{3}} - 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = \frac{x}{\sqrt{3}} - \frac{1}{\sqrt{3}} = \frac{x}{\sqrt{3}} - \frac{1}{\sqrt{3}} = \frac{x}{\sqrt{3}} - \frac{1}{\sqrt{3}} = \frac{x}{\sqrt{3}} = \frac{x}{\sqrt{3}} - \frac{1}{\sqrt{3}} = \frac{x}{\sqrt{3}} = $  | ive your answer i  | in degrees         |
| Find the acute angle correct to two deci              | nal places.            | ines $y = \sqrt{3}x + 1$ ar | $\int_{0}^{\infty} dy = \frac{x}{\sqrt{3}} - 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1. \text{ Given the first of } \frac{x}{\sqrt{3}} = 1.  Given the $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ive your answer i  | in degrees         |





## <u>Sub-Section [1.1.5]</u>: Find The Unknown Value for a System of Linear Equations

| Question 17                                                                                         |
|-----------------------------------------------------------------------------------------------------|
| Consider the simultaneous linear equations:                                                         |
| y = kx + 6                                                                                          |
| y = 2x + 5                                                                                          |
| Where $x, y \in R$ and $k$ is a real constant.                                                      |
| <b>a.</b> Find the value(s) of $k$ for which the system of equations has no solution.               |
|                                                                                                     |
|                                                                                                     |
|                                                                                                     |
| <b>b.</b> Find the value(s) of $k$ for which the system of equations has infinitely many solutions. |
|                                                                                                     |
|                                                                                                     |
| $\mathbf{c}$ . Find the value(s) of $k$ for which the system of equations has a unique solution.    |
|                                                                                                     |
|                                                                                                     |







Consider the simultaneous linear equations:

$$-3kx + y = k$$

$$-3x + ky = -1$$

Where  $x, y \in R$  and k is a real constant.

**a.** Find the value(s) of k for which the system of equations has no real solution.

**b.** Find the value(s) of k for which the system of equations has infinitely many solutions.

c. Find the value(s) of k for which the system of equations has a unique solution.





Consider the simultaneous linear equations:

$$kx + y = 2$$

$$2x + (k-2)y = 4$$

Where  $x, y \in R$  and k is a real constant.

| a. | Find the value(s) of $k$ for which the system of equations has no real solution. |
|----|----------------------------------------------------------------------------------|
|    |                                                                                  |

|  | <br> |  |
|--|------|--|

| b. | Find the value(s) of k for which the system of equations has infinitely many solutions. |
|----|-----------------------------------------------------------------------------------------|
|    |                                                                                         |
|    |                                                                                         |
|    |                                                                                         |
|    |                                                                                         |
|    |                                                                                         |

| Find the value(s) of $k$ for which the system of equations has a unique solution. |
|-----------------------------------------------------------------------------------|
|                                                                                   |
|                                                                                   |



| Question | 20   |
|----------|------|
| Oucsuon  | . ⊿∪ |



Consider the simultaneous linear equations:

$$(k-2)x + 3y = 5$$

$$4x + (k+1)y = k+7$$

Where  $x, y \in R$  and k is a real constant.

Find the value(s) of k for which the system has no real solution.



### Section B: [1.2] - Linear & Coordinate Geometry Exam Skills (Checkpoints)

### Sub-Section [1.2.1]: Applying Midpoint to Find Reflected Points

| Question 21                                                                                                       |     |
|-------------------------------------------------------------------------------------------------------------------|-----|
| Find the reflection of the point $(4,6)$ about the line $y=4$ .                                                   |     |
| <del></del>                                                                                                       |     |
|                                                                                                                   |     |
|                                                                                                                   |     |
|                                                                                                                   | . ( |
| Question 22                                                                                                       | ク   |
| The point $(3, 2)$ is reflected in the line $y = b$ , and to become the point $(3, -6)$ . Find the value of $b$ . |     |
|                                                                                                                   |     |
|                                                                                                                   |     |
|                                                                                                                   |     |
|                                                                                                                   |     |
| Space for Personal Notes                                                                                          |     |
|                                                                                                                   |     |
|                                                                                                                   |     |
|                                                                                                                   |     |
|                                                                                                                   |     |
|                                                                                                                   |     |

## **C**ONTOUREDUCATION

| _    |       |     |
|------|-------|-----|
| Ones | stion | -23 |



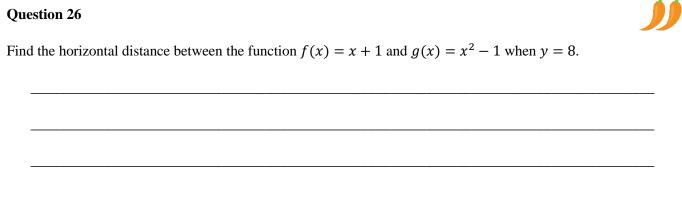
Consider the function  $f(x) = x^2 + 1$ .

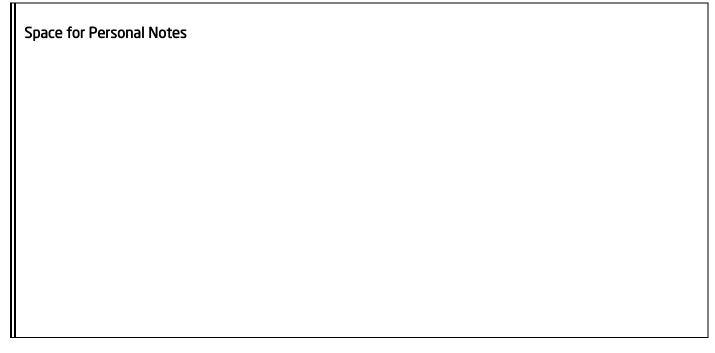
**a.** The point A(1,1) on the graph of y = f(x) is reflected about the line y = 0. Find the coordinates of the reflected points' position.

**b.** The entire graph of y = f(x) is reflected about the line y = 0. Find the equation of this new graph.

#### **Question 24**




The function  $y = (x - 1)^2 + 3$  is reflected about the line x = 3 and then reflected about the line y = 2. Find the equation of the graph after these reflections.






## <u>Sub-Section [1.2.2]</u>: Find Vertical and Horizontal Distance Between Functions

| Question 25                                                                          | ý   |
|--------------------------------------------------------------------------------------|-----|
| Find the vertical distance between $f(x) = 3x + 1$ and $g(x) = x + 3$ when $x = 2$ . |     |
|                                                                                      |     |
|                                                                                      | 4.4 |









Consider the functions y = x + 3 and  $y = x^2 + 1$ .

**a.** Solve the inequality  $x + 3 > x^2 + 1$ .

**b.** Hence, determine the vertical distance between the two functions when x = 1.





## Sub-Section [1.2.3]: Finding Distance Between a Point and a Function

| Question 28                                                                                               | <b></b> |
|-----------------------------------------------------------------------------------------------------------|---------|
| Find the distance between the point (1, 2) and the function $y = x^2$ , when $x = 3$ .                    |         |
|                                                                                                           |         |
|                                                                                                           |         |
|                                                                                                           |         |
|                                                                                                           |         |
|                                                                                                           |         |
| One of the 20                                                                                             | 66      |
| Question 29                                                                                               |         |
| The distance between the point $A(4,1)$ and the point $B(-3,m)$ is 7, find the possible value(s) of $m$ . |         |
|                                                                                                           |         |
|                                                                                                           |         |
|                                                                                                           |         |
|                                                                                                           |         |
|                                                                                                           |         |
|                                                                                                           |         |
|                                                                                                           |         |
|                                                                                                           |         |
| Space for Personal Notes                                                                                  |         |
|                                                                                                           |         |
|                                                                                                           |         |
|                                                                                                           |         |
|                                                                                                           |         |



| Question 30                                                                                  |  |  |  |
|----------------------------------------------------------------------------------------------|--|--|--|
| Find the point(s) on the line $y = 3x + 3$ which have a distance of 5 from the point (1, 1). |  |  |  |
|                                                                                              |  |  |  |
|                                                                                              |  |  |  |
|                                                                                              |  |  |  |
|                                                                                              |  |  |  |
|                                                                                              |  |  |  |
|                                                                                              |  |  |  |
|                                                                                              |  |  |  |
|                                                                                              |  |  |  |
| Space for Personal Notes                                                                     |  |  |  |
| Space for Personal Notes                                                                     |  |  |  |
|                                                                                              |  |  |  |
|                                                                                              |  |  |  |
|                                                                                              |  |  |  |
|                                                                                              |  |  |  |
|                                                                                              |  |  |  |
|                                                                                              |  |  |  |
|                                                                                              |  |  |  |
|                                                                                              |  |  |  |
|                                                                                              |  |  |  |
|                                                                                              |  |  |  |

## Section C: [1.3] - Quadratics (Checkpoints)



### <u>Sub-Section [1.3.1]</u>: Rewriting Quadratics in Different Forms

| Qu  | estion 31                                   |  |
|-----|---------------------------------------------|--|
| Fin | d the factorised forms of these quadratics: |  |
| a.  | $\chi^2-4$                                  |  |
|     |                                             |  |
|     |                                             |  |
|     |                                             |  |
|     |                                             |  |
| h   | $x^2-3x$                                    |  |
| D.  | x - 3x                                      |  |
|     |                                             |  |
|     |                                             |  |
|     |                                             |  |
|     |                                             |  |
| c.  | $5x^2 + 10x$                                |  |
|     |                                             |  |
|     |                                             |  |
|     |                                             |  |
|     |                                             |  |
|     |                                             |  |





**a.** Express  $x^2 + 4x + 3$  in intercept form, (a(x - b)(x - c)).

**b.** Express  $x^2 - 2x + 3$  in turning point form,  $(a(x - h)^2 + k)$ .

c. Factorise  $x^2 + 6x + 9$ .



| Question | 33 |
|----------|----|
| Question | -  |



**a.** Factorise  $3x^2 - 12x - 15$ .

**b.** Express  $2x^2 - 12x + 9$  in turning point form.

c. Express 2(x-1)(x+3) in turning point form.



| Question 34                        |  |
|------------------------------------|--|
| Factorise $6x^2 - \sqrt{5}x - 5$ . |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |





## <u>Sub-Section [1.3.2]</u>: Find Solutions and Number of Solutions to Quadratic Equations

**Question 35** 



Find all real solutions to the following equations:

**a.**  $x^2 = -5x$ 

**b.**  $4x^2 - 16 = 0$ 

**c.**  $2x^2 - 18x = 0$ 



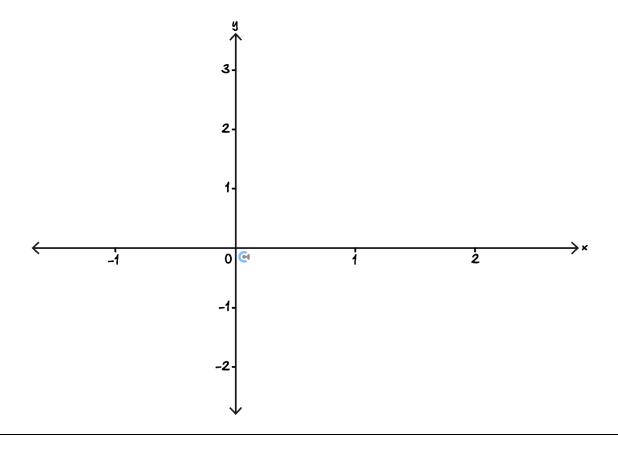
| Qı | uestion 36                                                     |  |
|----|----------------------------------------------------------------|--|
| a. | Find all real solutions to the equation $x^2 - 10x + 25 = 0$ . |  |
|    |                                                                |  |
|    |                                                                |  |
|    |                                                                |  |
|    |                                                                |  |
|    |                                                                |  |
| b. | How many solutions does the equation $x^2 + 2x - 15$ have?     |  |
|    |                                                                |  |
|    |                                                                |  |
|    |                                                                |  |
|    |                                                                |  |
|    |                                                                |  |
| c. | Find all real solutions to the equation $3(x + 1)^2 = 12$ .    |  |
|    |                                                                |  |
|    |                                                                |  |
|    |                                                                |  |
|    |                                                                |  |
|    |                                                                |  |
|    |                                                                |  |



| Qι | nestion 37                                                                      |
|----|---------------------------------------------------------------------------------|
| a. | Find all real solutions to the equation $x^2 - 6x = 4$ .                        |
|    |                                                                                 |
|    |                                                                                 |
|    |                                                                                 |
|    |                                                                                 |
|    |                                                                                 |
|    |                                                                                 |
|    |                                                                                 |
|    |                                                                                 |
|    |                                                                                 |
|    |                                                                                 |
| b. | For what values of a does the equation $ax^2 - 6x = 18$ have no real solutions? |
|    |                                                                                 |
|    |                                                                                 |
|    |                                                                                 |
|    |                                                                                 |
|    |                                                                                 |
|    |                                                                                 |
|    |                                                                                 |

| c.  | Find all real solutions to the equation $5x^2 + 20x = 15$ .              |  |  |  |  |  |
|-----|--------------------------------------------------------------------------|--|--|--|--|--|
|     |                                                                          |  |  |  |  |  |
|     |                                                                          |  |  |  |  |  |
|     |                                                                          |  |  |  |  |  |
|     |                                                                          |  |  |  |  |  |
|     |                                                                          |  |  |  |  |  |
|     |                                                                          |  |  |  |  |  |
|     |                                                                          |  |  |  |  |  |
| Qι  | Question 38                                                              |  |  |  |  |  |
| Fac |                                                                          |  |  |  |  |  |
| Fo  | what values of b does the equation $2x(b-x) = 5$ have no real solutions? |  |  |  |  |  |
| Fo  |                                                                          |  |  |  |  |  |
| Fo  |                                                                          |  |  |  |  |  |
| Fo  |                                                                          |  |  |  |  |  |
| Fo  |                                                                          |  |  |  |  |  |
| Fo  |                                                                          |  |  |  |  |  |
| Fo  |                                                                          |  |  |  |  |  |
|     |                                                                          |  |  |  |  |  |

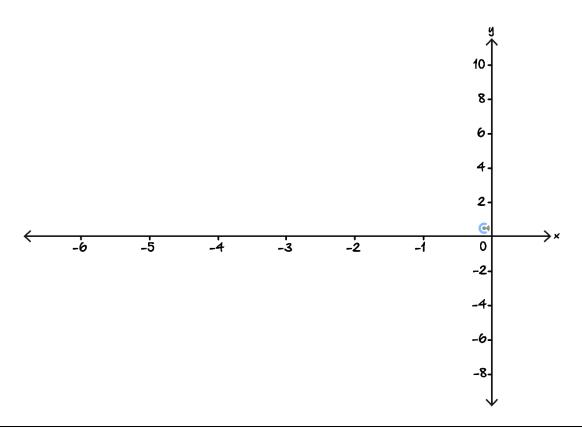
29






# <u>Sub-Section [1.3.3]</u>: Graph and Find Rules From the Graph of Quadratic Equations

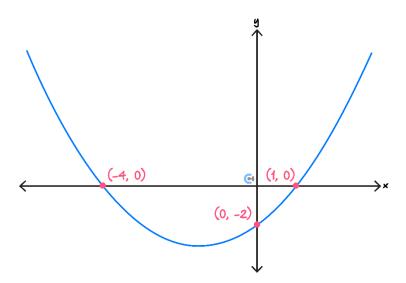
# Question 39 Sketch the graph of 3


Sketch the graph of y = (x + 1)(x - 2) on the axis below.







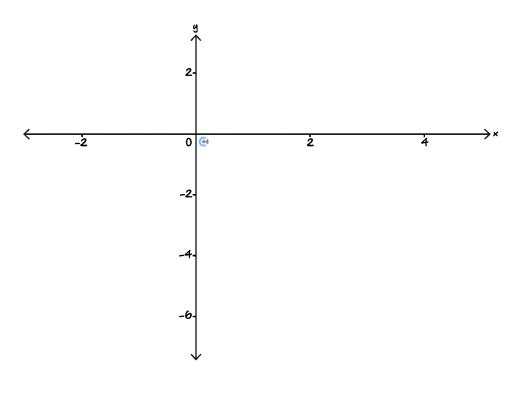

Sketch the graph of  $y = 2(x + 3)^2 - 8$  on the axis below, labelling axis intercepts and turning points with their coordinates.





أزار

The graph of a parabola is shown below.




Find the rule of this parabola.





Sketch the graph of  $3y = 5 - (x - 1)^2$  on the axis below, labelling axis intercepts and turning points with their coordinates.







## <u>Sub-Section [1.3.4]</u>: Solving Quadratic Inequalities and Hidden Quadratics

| Qu | uestion 43                     |
|----|--------------------------------|
| a. | Solve $x^2 > 1$ for $x$ .      |
|    |                                |
|    |                                |
|    |                                |
|    |                                |
| b. | Solve $x(x-2) \le 3$ for $x$ . |
|    |                                |
|    |                                |
|    |                                |
|    |                                |
|    |                                |
|    |                                |
|    |                                |
|    |                                |



Solve  $(x-1)^4 - (x-1)^2 = 12$  for x.

|      | <br> |
|------|------|
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |

### **Question 45**



Solve  $x^2 + 6x + 8 \ge 2$  for x.

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |



| Question 46                                                                                    | الالالا |
|------------------------------------------------------------------------------------------------|---------|
| For what values of x is $ax^2 + bx + c < d$ , where $a, b, c, d \in R$ , $a < 0$ and $c > d$ ? |         |
|                                                                                                |         |
|                                                                                                |         |
|                                                                                                |         |
|                                                                                                |         |
|                                                                                                |         |
|                                                                                                |         |
|                                                                                                |         |
|                                                                                                |         |
|                                                                                                |         |
|                                                                                                |         |
|                                                                                                |         |



### Section D: [1.4] - Quadratics Exam Skills (Checkpoints)



### Sub-Section [1.4.1]: Find Turning Point Form Using Turning Points

| Question 47                                                                                         |             |
|-----------------------------------------------------------------------------------------------------|-------------|
| Find the turning point of the parabola $y = 2(x - 1)^2 + 3$ .                                       |             |
| 2 ma and taxining point of and paradoonal y 2 (to 2) 1 or                                           |             |
|                                                                                                     |             |
|                                                                                                     |             |
|                                                                                                     |             |
|                                                                                                     |             |
|                                                                                                     |             |
|                                                                                                     | 1 1         |
| Question 48                                                                                         |             |
| Find the equation of a parabola that has a turning point at (5, 3) and has a y-axis intercept of 8. |             |
|                                                                                                     |             |
|                                                                                                     |             |
|                                                                                                     | <del></del> |
|                                                                                                     |             |
|                                                                                                     |             |
|                                                                                                     |             |
|                                                                                                     |             |
|                                                                                                     |             |
|                                                                                                     |             |
|                                                                                                     |             |
|                                                                                                     |             |
| Space for Personal Notes                                                                            |             |
|                                                                                                     |             |
|                                                                                                     |             |
|                                                                                                     |             |



| Question 49                                                  |  |
|--------------------------------------------------------------|--|
| Find the turning point of the parabola $y = 2x^2 - 4x + 5$ . |  |
|                                                              |  |
|                                                              |  |
|                                                              |  |
|                                                              |  |
|                                                              |  |
|                                                              |  |
|                                                              |  |





### Sub-Section [1.4.2]: Apply Quadratics to Model a Scenario

#### **Question 50**



A ball is thrown up into the air from a height of 1 metre. It reaches its maximum height of 2 metres after 1 second. The height in metres of the ball h, t seconds after the ball is launched is:

$$h(t) = a(t-1)^2 + 2$$

| Find the value of $a$ . |      |      |      |
|-------------------------|------|------|------|
|                         |      |      |      |
|                         | <br> |      |      |
|                         | <br> | <br> | <br> |
|                         |      |      |      |
|                         |      |      |      |

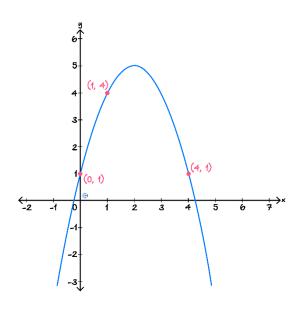
#### **Question 51**

Relate x and h.



A parabola-shaped bridge is used to cross a long river. The height of the bridge above the water level in metres, h, is a quadratic function of the horizontal distance of a point of a bridge from the starting river bank, x.

At the starting river bank, the height of the bridge is 2 metres above water level, and 5 metres away from the starting point (x = 5), the bridge is at its highest point, 6 metres above the water level (h = 6).


| <br> | <br> |
|------|------|
|      |      |
| <br> | <br> |
|      |      |
| <br> | <br> |
|      |      |
| <br> | <br> |
|      |      |

## **C**ONTOUREDUCATION





A river passes through 3 points in a park as shown below:



Where the x-axis represents the position due east from the centre of the park, and the y-axis represents the position due north from the centre of the park. We can relate the north position (y) of the river to the east position (x) of the river through the equation:

$$y = ax^2 + bx + c$$

| Find | d the values of $a$ , $b$ and $c$ . |  |
|------|-------------------------------------|--|
|      |                                     |  |
|      |                                     |  |
|      |                                     |  |
| •    |                                     |  |
|      |                                     |  |
|      |                                     |  |
|      |                                     |  |
|      |                                     |  |
|      |                                     |  |
| ,    |                                     |  |
|      |                                     |  |





## <u>Sub-Section [1.4.3]</u>: Apply Family of Functions to Find an Unknown of Function

| Question 53                                                                                                                                                    |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Consider the parabola $y = kx^2 - 6$ . Find the value(s) of $k$ such that the horizontal distance between $x$ -axis intercepts of the parabola is less than 4. |          |
|                                                                                                                                                                | -        |
|                                                                                                                                                                |          |
|                                                                                                                                                                | -        |
| ·                                                                                                                                                              | -        |
|                                                                                                                                                                |          |
| Question 54                                                                                                                                                    | <b>)</b> |
| Let $y = x^2 + 4kx - 1$ . Find the values of k such that $y \ge -2$ for all x.                                                                                 |          |
|                                                                                                                                                                |          |
|                                                                                                                                                                | -        |
|                                                                                                                                                                | -        |
|                                                                                                                                                                | -        |
|                                                                                                                                                                | -        |
|                                                                                                                                                                | -        |



| d all values of $k$ ative. | such that the equa | ation $(x-k-1)$ | $(1)^2 - 4 = k \text{ has}$ | s two real solution | ons for $x$ , one po | ositive and |
|----------------------------|--------------------|-----------------|-----------------------------|---------------------|----------------------|-------------|
| ative.                     |                    |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |
| ace for Persona            | al Notes           |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |
|                            |                    |                 |                             |                     |                      |             |





### <u>Sub-Section [1.4.4]</u>: Harder Quadratic Inequalities

| Question 56                  |  |
|------------------------------|--|
| Solve $x(x+3) > 4$ for $x$ . |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |
|                              |  |

| Sol | lve $1 + \frac{2}{x-2} \le \frac{5}{(x-2)^2}$ for $x$ . |
|-----|---------------------------------------------------------|
|     |                                                         |
|     |                                                         |
|     |                                                         |
|     |                                                         |



| Question 58                                |  |
|--------------------------------------------|--|
| Solve $(x^2 + 2)^2 - 4 \ge 8x^2$ for $x$ . |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |
|                                            |  |



### Section E: [1.5] - Polynomials (Checkpoints)



# <u>Sub-Section [1.5.1]</u>: Identify the Properties of Polynomials and Solve Long Division

#### **Question 59**



Consider the polynomial  $f(x) = 3x^2 - 4x^4 + 1 - 2x$ .

- **a.** State the degree of f(x).
- **b.** State the leading coefficient of f(x).
- **c.** State the constant term of f(x).



Simplify the following using polynomial long division:

$$\frac{x^3 + 2x^2 - 5x - 6}{x - 2}$$

| <br> |  |  |
|------|--|--|
| <br> |  |  |
|      |  |  |

#### **Question 61**



The polynomial  $P(x) = x^4 - 2x^2 - 5x + 3$  can be written in the form P(x) = Q(x)(x - 2) + r, where  $r \in R$  and Q(x) is a real valued polynomial. Find Q(x) and r.

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |



| Question | . 62 |
|----------|------|
| Question | 1 02 |



The polynomial  $P(x) = 2x^4 + 3x^3 - 5x + 1$  can be written in the form  $P(x) = Q(x)(x^2 - 2x + 3) + R(x)$ , where R(x) is a polynomial of degree 1 and Q(x) is a polynomial.

- a. State the degree of Q(x).
- **b.** Find Q(x) and R(x).





### Sub-Section [1.5.2]: Apply Reminder and Factor Theorem to Find **Reminders and Factors**

#### **Question 63**



Find the remainder of the division  $\frac{f(x)}{g(x)}$ , where:

**a.**  $f(x) = x^3 - 7x + 8$  and g(x) = x + 3.

**b.**  $f(x) = 2x^3 - 6x^2 - 2x + 4$  and g(x) = x - 1.

**c.**  $f(x) = -3x^3 + 8x^2 - 3x + 2$  and g(x) = 3x + 1.



| Question 64                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------|
| For the polynomial $f(x) = ax^3 2x^2 - 3ax + 1$ , we get a remainder of 5 when $f(x)$ is divided by $x + 2$ . Find the value of $a$ . |
|                                                                                                                                       |
|                                                                                                                                       |
|                                                                                                                                       |
|                                                                                                                                       |
|                                                                                                                                       |
|                                                                                                                                       |

| Space for Personal Notes |
|--------------------------|
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |



| $\sim$ | 4.     |    |
|--------|--------|----|
|        | oction | h- |
| - Vu   | estion | U  |



Consider the expression:

$$f(x) = 2x^3 - ax^2 + b$$

Where a and b are non-zero constants.

It is known that x + 1 is a factor of f(x) and that the remainder when f(x) is divided by x - 2 is 3. Find the values of a and b.





| Question 66                                                        |  |
|--------------------------------------------------------------------|--|
| Find a cubic polynomial $f(x)$ which has the following properties: |  |
| $\rightarrow$ $f(x)$ has a leading coefficient of $-2$ .           |  |
| $f(x)$ divided by $x^2 - 1$ leaves a remainder of 1.               |  |
| $\rightarrow$ $x-3$ is a factor of $f(x)$ .                        |  |
|                                                                    |  |
|                                                                    |  |
|                                                                    |  |
|                                                                    |  |
|                                                                    |  |
|                                                                    |  |
|                                                                    |  |
|                                                                    |  |
|                                                                    |  |
|                                                                    |  |
|                                                                    |  |
| [                                                                  |  |







### <u>Sub-Section [1.5.3]</u>: Find Factored Form of Polynomials

| Factorise $x^3 - 2x^2 - x + 2$ as a product of three linear factors.   |   |
|------------------------------------------------------------------------|---|
|                                                                        | _ |
|                                                                        | _ |
|                                                                        | _ |
|                                                                        | _ |
|                                                                        | _ |
|                                                                        | _ |
|                                                                        | _ |
|                                                                        |   |
| Question 68                                                            |   |
| Factorise $x^3 - 6x^2 + 3x + 10$ as a product of three linear factors. |   |
|                                                                        | _ |
|                                                                        | _ |
|                                                                        | _ |
|                                                                        | _ |
|                                                                        | _ |
|                                                                        | _ |
|                                                                        | _ |



| Question | 69 |
|----------|----|
| Question | 0, |



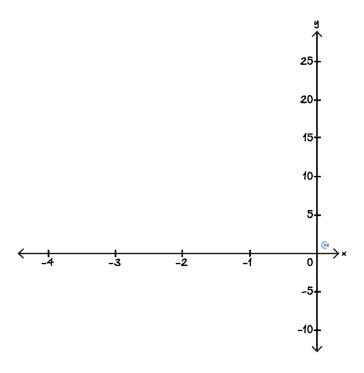
Factorise  $2x^3 + \frac{25x^2}{3} + x - \frac{4}{3}$  as a product of three linear factors.



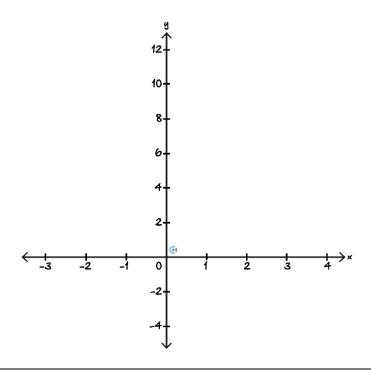
| Question 70                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use the fact that $x^n - 1 = (1 + x + x^2 + \dots + x^{n-1})(x - 1)$ to factorise $1 + x^2 + x^4 + x^6 + x^8$ as a product of two-degree four polynomials. |
|                                                                                                                                                            |
|                                                                                                                                                            |
|                                                                                                                                                            |
|                                                                                                                                                            |
|                                                                                                                                                            |
|                                                                                                                                                            |
|                                                                                                                                                            |

|   | Space for Personal Notes |
|---|--------------------------|
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
| L |                          |

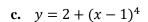


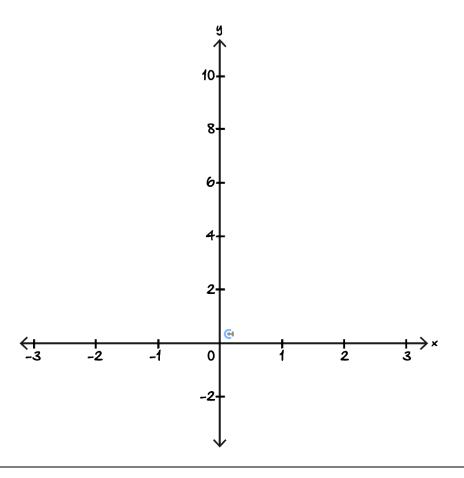



## Sub-Section [1.5.4]: Graph Factored and Unfactored Polynomials


#### **Question 71**

Sketch the graphs of each of the functions on the axes provided.

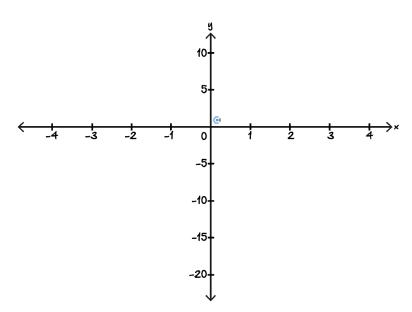

**a.** 
$$y = 8 - (x + 2)^3$$



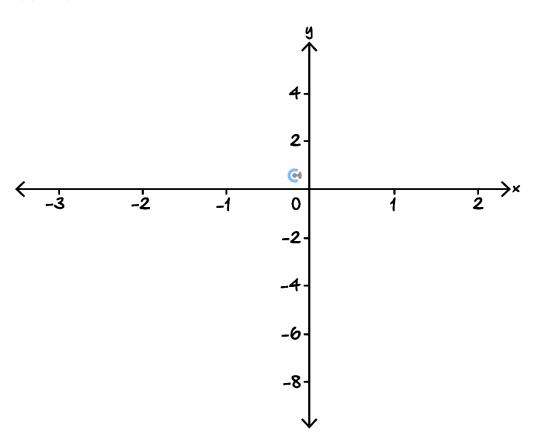

**b.** 
$$y = (x - 1)(x + 2)(x - 3)$$










Sketch the graphs of each of the functions on the axes provided.

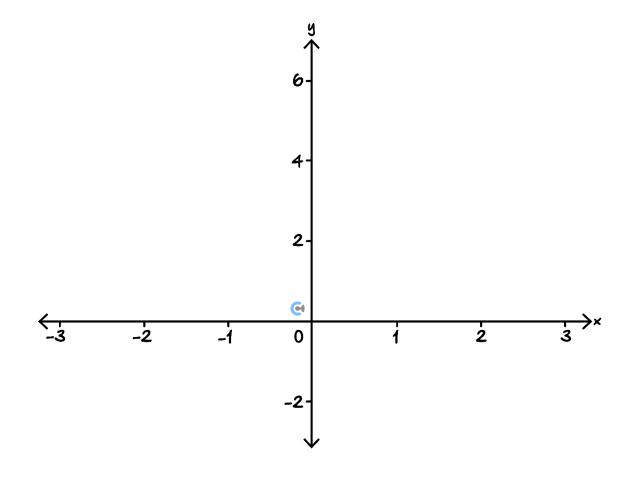
**a.** 
$$y = (x+3)^2(x-2)$$





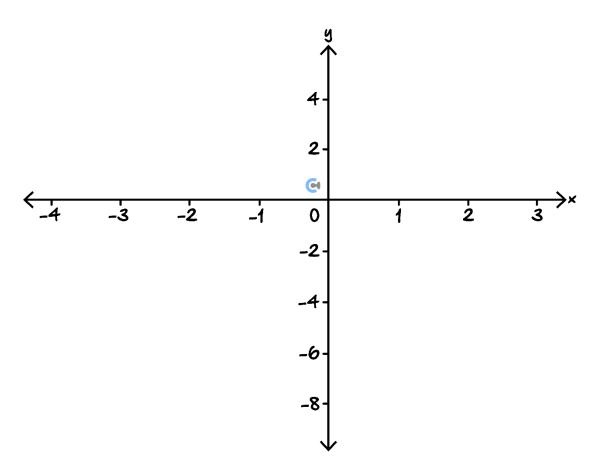


**c.** 
$$y = (x+1)^2(x-3)^3$$

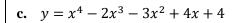


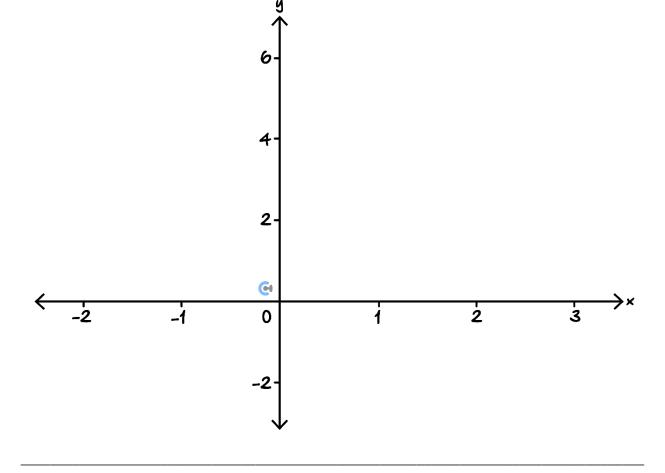






Factorise and hence, sketch the graphs of each of the functions on the axes provided.

**a.** 
$$y = x^3 - x^2 - 4x + 4$$



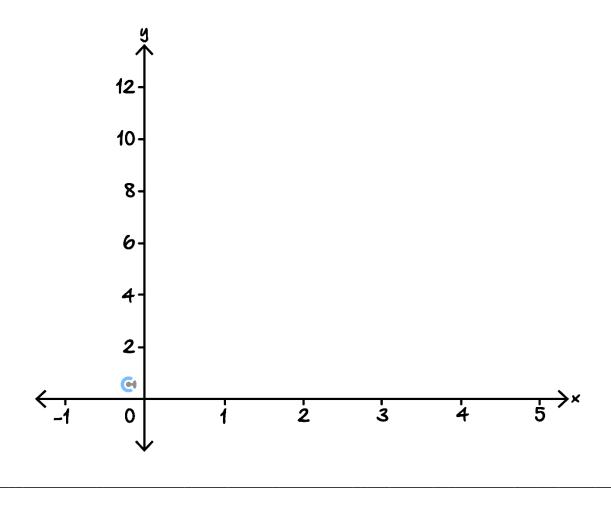

**b.**  $y = x^3 + 2x^2 - 5x - 6$ 










| <br> | <br> |  |
|------|------|--|
|      |      |  |
| <br> | <br> |  |



الالالا

Sketch the graph of  $y = x^4 - 8x^3 + 22x^2 - 24x + 10$  on the axis below.

Hint: Factorise  $x^4 - 8x^3 + 22x^2 - 24x + 9$  instead.



### Section F: [1.6] - Polynomials Exam Skills (Checkpoints)

### <u>Sub-Section [1.6.1]</u>: Solve Polynomial Inequalities

**Question 75** 



Solve the following inequalities for x:

**a.**  $x(x-1)(x+2) \le 0$ .

**b.** (x-2)(x+1)(x+3) > 0.



Solve the following inequalities for x:

**a.**  $(x-5)(x^2+x-2) \le 0$ .

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |

**b.**  $(1-x)(x^2-4x+4) \ge 0$ .





Solve the following inequalities for x:

|    | 3         | <b>-</b> 2 |       | 12.  | ^   |
|----|-----------|------------|-------|------|-----|
| a. | $x^{3}$ – | - 5x² -    | -8x + | 12 > | (). |

MM12 [1.0] - AOS 1 Revision - Contour Check Part 1

| h  | $-x^{3} +$ | $4x^2 \perp$ | -v-A       | l < 0 |
|----|------------|--------------|------------|-------|
| v. | <i>1</i>   | TA I         | <i>1</i> 7 | · • • |



Solve the inequality  $4x^5 - 16x^4 + 13x^3 - 3x^2 > 4x^3 - 16x^2 + 13x - 3$ .





### <u>Sub-Section [1.6.2]</u>: Solve Number of Solution Problems

| Qu  | estion 79                                                             |  |
|-----|-----------------------------------------------------------------------|--|
| Fin | and the values of k, for which the equation $x(x^2 + 4) = 4kx^2$ has: |  |
| a.  | 1 solution.                                                           |  |
|     |                                                                       |  |
|     |                                                                       |  |
|     |                                                                       |  |
|     |                                                                       |  |
|     |                                                                       |  |
|     |                                                                       |  |
|     |                                                                       |  |
| b.  | 2 solutions.                                                          |  |
|     |                                                                       |  |
|     |                                                                       |  |
|     |                                                                       |  |
|     |                                                                       |  |
| c.  | 3 solutions.                                                          |  |
|     |                                                                       |  |
|     |                                                                       |  |
|     |                                                                       |  |
|     |                                                                       |  |
|     |                                                                       |  |
|     |                                                                       |  |



| Question 80                                                               |  |  |
|---------------------------------------------------------------------------|--|--|
| Find the values of k, for which the equation $kx^9 + 2x^6 + x^3 = 0$ has: |  |  |
| a. 1 solution.                                                            |  |  |
|                                                                           |  |  |
|                                                                           |  |  |
|                                                                           |  |  |
|                                                                           |  |  |
|                                                                           |  |  |
|                                                                           |  |  |
|                                                                           |  |  |
| <b>b.</b> 2 solutions.                                                    |  |  |
|                                                                           |  |  |
|                                                                           |  |  |
|                                                                           |  |  |
|                                                                           |  |  |
|                                                                           |  |  |
| c. 3 solutions.                                                           |  |  |
|                                                                           |  |  |
|                                                                           |  |  |
|                                                                           |  |  |
|                                                                           |  |  |
|                                                                           |  |  |
|                                                                           |  |  |
|                                                                           |  |  |
| Space for Personal Notes                                                  |  |  |
|                                                                           |  |  |
|                                                                           |  |  |



Find the values of k, for which the equation  $x(x-2k-2)(x^2+kx+4)=-x^2-kx-4$  has:

a. 4 solutions.

**b.** 3 solutions.



VCE Methods ½ Questions? Message +61 440 138 726

| c. | 2 solutions.            |
|----|-------------------------|
|    |                         |
|    |                         |
|    |                         |
|    |                         |
|    |                         |
|    |                         |
|    |                         |
| d. | 1 solution.             |
|    |                         |
|    |                         |
|    |                         |
|    |                         |
|    | No solutions.           |
| e. | NO SOLUTIONS.           |
|    |                         |
|    |                         |
|    |                         |
|    |                         |
|    |                         |
|    |                         |
| Sp | pace for Personal Notes |
|    |                         |
|    |                         |
|    |                         |
|    |                         |



| On | estion | 22 |
|----|--------|----|
| Οu | esuon  | 04 |



Consider the polynomial  $P(x) = x^3 + ax + b$ .

Show that if  $\Delta = -4a^3 - 27b^2 = 0$ , that P(x) = 0 has less than 3 solutions.

Hint: If  $r_1, r_2, r_3$  are the roots of P(x), show that  $\Delta = (r_1 - r_2)^2 (r_2 - r_3)^2 (r_3 - r_1)^2$ .

Please use a calculator.

| =        |  |
|----------|--|
|          |  |
|          |  |
|          |  |
|          |  |
| <u> </u> |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |





### Sub-Section [1.6.3]: Apply Bisection Method to Approximate x-Intercepts

| Question 83 CAS-Active.                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use the bisection method to find the approximate real solution to the equation $x^3 + 2x^2 - 5x + 3 = 0$ . Use the interval $[-4, -3]$ for the first iteration and a maximum error of 0.1. Give your approximation correct to two decimal places. |
|                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                   |
| Question 84 CAS-Active.                                                                                                                                                                                                                           |
| Use the bisection method to find the approximate real solution to the equation $x\log_2(x) + 3x = 4$ . Use the interval [0.1,2] for the first iteration and a maximum error of 0.01. Give your approximation correct to two decimal places.       |
|                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                   |



| Question 85 CA    | AS-Active.                                                                                         | j |
|-------------------|----------------------------------------------------------------------------------------------------|---|
| Use the bisection | n method to approximate $\pi$ correct to three decimal places.                                     |   |
|                   |                                                                                                    |   |
|                   |                                                                                                    |   |
|                   |                                                                                                    |   |
|                   |                                                                                                    |   |
|                   |                                                                                                    |   |
|                   |                                                                                                    |   |
|                   |                                                                                                    |   |
|                   |                                                                                                    |   |
| Question 86       | <b></b>                                                                                            | ń |
|                   |                                                                                                    |   |
| Explain why you   | a cannot use the bisection method to approximate the solution to the equation $x^4 - 2x^2 + 1 = 0$ |   |
|                   |                                                                                                    |   |
|                   |                                                                                                    |   |
|                   |                                                                                                    |   |
|                   |                                                                                                    |   |
|                   |                                                                                                    |   |
|                   |                                                                                                    |   |
|                   |                                                                                                    |   |
|                   |                                                                                                    |   |
|                   |                                                                                                    |   |
| Space for Perso   | onal Notes                                                                                         |   |
| Space for Perso   | onal Notes                                                                                         |   |
| Space for Perso   | onal Notes                                                                                         |   |
| Space for Perso   | onal Notes                                                                                         |   |



# <u>Section G:</u> [1.1 - 1.6] - Exam 1 Overall

| Question 87                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Let the coordinates of the point $X$ be $(a, b)$ . Find the coordinates of $X'$ , which is the point on $X$ reflected across the lines $x = 1$ and $y = -3$ . Give your answer in terms of $a$ and $b$ . |
|                                                                                                                                                                                                          |
|                                                                                                                                                                                                          |
|                                                                                                                                                                                                          |
|                                                                                                                                                                                                          |
|                                                                                                                                                                                                          |
| Question 88                                                                                                                                                                                              |
| Find the equation of the line that is parallel to $y = -3x - 4$ and passes through the point (7, 5).                                                                                                     |
|                                                                                                                                                                                                          |
|                                                                                                                                                                                                          |
|                                                                                                                                                                                                          |
|                                                                                                                                                                                                          |
|                                                                                                                                                                                                          |
| Space for Personal Notes                                                                                                                                                                                 |
|                                                                                                                                                                                                          |
|                                                                                                                                                                                                          |
|                                                                                                                                                                                                          |
|                                                                                                                                                                                                          |
|                                                                                                                                                                                                          |

#### **Question 89**

Solve the simultaneous linear equations:

$$\frac{2}{3}x + \frac{1}{2}y = 4,$$

$$\frac{5}{4}x - \frac{5}{4}y = -\frac{5}{4}.$$

|      | <br> |      |
|------|------|------|
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |

#### **Question 90**

Consider the functions f(x) = 2x + 3 and  $g(x) = (x + 2)^2$ .

**a.** Find the vertical distance between f and g, when x = 2.

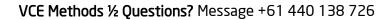
| b. | Find the horizontal distance between $f$ and $g$ , when $y = 4$ .       |
|----|-------------------------------------------------------------------------|
|    |                                                                         |
|    |                                                                         |
|    |                                                                         |
| c. | Find the distance between the point (2, 4) and $g(x)$ , when $x = 14$ . |
|    |                                                                         |
|    |                                                                         |
|    |                                                                         |
|    |                                                                         |
|    |                                                                         |

## **Question 91**

Consider the simultaneous linear equations:

$$\frac{m}{3} x - y = m,$$

$$4x + my = -7,$$


Where m is a real constant.

**a.** Find the values of m for which there is a unique solution to the simultaneous equations.



## VCE Methods ½ Questions? Message +61 440 138 726

| b. | If possible, determine the value(s) of $m$ for which there are infinitely many solutions. |  |
|----|-------------------------------------------------------------------------------------------|--|
|    |                                                                                           |  |
|    |                                                                                           |  |
| c. | If possible, determine the value(s) of $m$ for which there are no solutions.              |  |
|    |                                                                                           |  |
|    |                                                                                           |  |
|    |                                                                                           |  |
|    |                                                                                           |  |
| Sp | ace for Personal Notes                                                                    |  |
|    |                                                                                           |  |
|    |                                                                                           |  |
|    |                                                                                           |  |
|    |                                                                                           |  |
|    |                                                                                           |  |
|    |                                                                                           |  |
|    |                                                                                           |  |
|    |                                                                                           |  |
|    |                                                                                           |  |





| Que | estion 92                                                                                                                                                         |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | is standing at the point $(1,6)$ when a bus goes past him. The bus' path is described by the line $-3x = 4$ . Find the shortest distance between Cam and the bus. |
|     |                                                                                                                                                                   |
|     |                                                                                                                                                                   |
|     |                                                                                                                                                                   |
|     |                                                                                                                                                                   |
|     |                                                                                                                                                                   |
|     |                                                                                                                                                                   |
|     |                                                                                                                                                                   |
|     |                                                                                                                                                                   |
|     |                                                                                                                                                                   |
|     |                                                                                                                                                                   |
|     |                                                                                                                                                                   |
| Spa | ace for Personal Notes                                                                                                                                            |
|     |                                                                                                                                                                   |
|     |                                                                                                                                                                   |
|     |                                                                                                                                                                   |
|     |                                                                                                                                                                   |
|     |                                                                                                                                                                   |
|     |                                                                                                                                                                   |
|     |                                                                                                                                                                   |
|     |                                                                                                                                                                   |
|     |                                                                                                                                                                   |





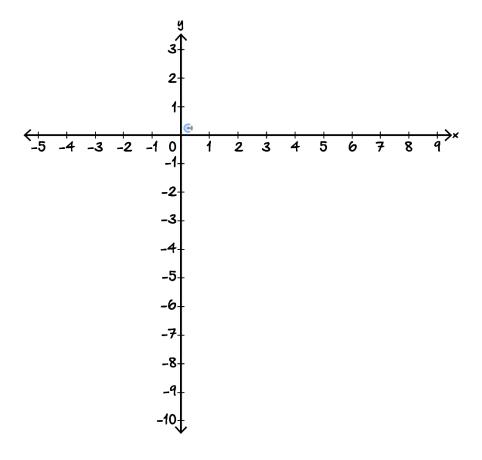
## VCE Methods ½ Questions? Message +61 440 138 726

Question 93 (4 marks) **a.** For what values of x is  $x^2 - 7x + 12 > 0$ ? (2 marks) **b.** For what values of x is  $1 - \frac{1}{x} - \frac{12}{x^2} > 0$ ? (2 marks)

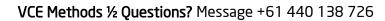


VCE Methods ½ Questions? Message +61 440 138 726

| ne sum of the age of a son and his father is 35 years and the product is 150. Find their ages.  pace for Personal Notes |
|-------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |
| pace for Personal Notes                                                                                                 |
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |
|                                                                                                                         |




Question 95 (4 marks)


Consider the function  $f(x) = x^2 - 4x - 5$ .

**a.** Solve the equation f(x) = 0. (1 mark)

**b.** Sketch the graph of y = f(x) on the axes below. Label the turning point and all axes intercept with coordinates. (2 marks)



**c.** Hence, find the value(s) of x such that f(x) + 5 < 0. (1 mark) Question 96 (2 marks) Solve the inequality  $x^2 - 6x - 7 \le 0$ .





| nsider the function | s) a $f(x) = kx^2 - 4x + 6$ , where $k$ is a real number. Find all possible values of $k$ if $f(x)$ i |
|---------------------|-------------------------------------------------------------------------------------------------------|
| ays greater than 1  | f(x) = kx - 4x + 6, where k is a real number. Find an possible values of k if $f(x)$ is               |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |
| ace for Personal    | Notes                                                                                                 |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |
|                     |                                                                                                       |



| Question 98 (5 marks)                                                                                      |        |
|------------------------------------------------------------------------------------------------------------|--------|
| Consider the function $f(x) = x^2 - kx - 4$ , where k is a real number.                                    |        |
| <b>a.</b> Show that the graph $y = f(x)$ always has two x-intercepts. (1 mark)                             |        |
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            |        |
| <b>b.</b> Find the values of $k$ such that the distance between the two $x$ -intercepts is less than 6. (3 | marks) |
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            |        |
| <b>c.</b> Find the minimum possible distance between the two $x$ -intercepts. (1 mark)                     |        |
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            |        |
|                                                                                                            |        |

## **Question 99**

Consider the polynomial  $f(x) = x^3 - 7x + 6$ .

**a.** Show that f(1) = 0.

**b.** Solve f(x) = 0 for x.

c. Hence, solve  $f(x) \ge 0$  for x.

| r what values of $k$ do | es the equation $k(x)$ | $(x^3 + x^2) = x \text{ hav}$ | e exactly one sol | ution. |  |
|-------------------------|------------------------|-------------------------------|-------------------|--------|--|
|                         |                        |                               |                   |        |  |
|                         |                        |                               |                   |        |  |
|                         |                        |                               |                   |        |  |
|                         |                        |                               |                   |        |  |
|                         |                        |                               |                   |        |  |
|                         |                        |                               |                   |        |  |
|                         |                        |                               |                   |        |  |
|                         |                        |                               |                   |        |  |
|                         |                        |                               |                   |        |  |
|                         |                        |                               |                   |        |  |
|                         |                        |                               |                   |        |  |
|                         |                        |                               |                   |        |  |
|                         |                        |                               |                   |        |  |

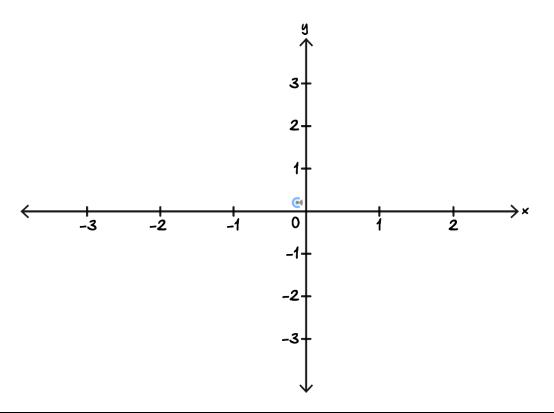
| On   | estion | 101 |
|------|--------|-----|
| - Ou | esuon  | 101 |

Consider the polynomial  $f(x) = x^3 - 3x^2 + x + 1$ .

**a.** Fully factorise f(x) into linear factors.

**b.** A bisection method is used to solve f(x) = 0 with the first interval being [2,3]. Use the fact that  $\sqrt{2} \approx 1.4$  to write down the next 3 intervals.

| <br> | <br> | <br> |
|------|------|------|
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |


#### **Question 102**

Let  $f(x) = x^4 + 3x^3 + x^2 - 3x - 2$ .

**a.** Show that  $x^2 - 1$  is a factor of f.



**b.** Sketch the graph of y = f(x) on the axis below. Label all axis intercepts with their coordinates. Note that some turning points occur at (-1.69, -0.40) and (0.44, -2.83).





| Question 103 (5 marks)                                                                                                                         |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Let P be a point on the straight line $y = 2x - 4$ such that the length of OP, the line segment from the origin O to P, is a minimum.          |  |  |  |  |
| <b>a.</b> Find the coordinates of <i>P</i> . (3 marks)                                                                                         |  |  |  |  |
|                                                                                                                                                |  |  |  |  |
|                                                                                                                                                |  |  |  |  |
|                                                                                                                                                |  |  |  |  |
|                                                                                                                                                |  |  |  |  |
|                                                                                                                                                |  |  |  |  |
| <b>b.</b> Find the distance <i>OP</i> . Express your answer in the form $\frac{a\sqrt{b}}{b}$ , where a and b are positive integers. (2 marks) |  |  |  |  |
|                                                                                                                                                |  |  |  |  |
|                                                                                                                                                |  |  |  |  |
|                                                                                                                                                |  |  |  |  |
|                                                                                                                                                |  |  |  |  |
|                                                                                                                                                |  |  |  |  |
| Space for Personal Notes                                                                                                                       |  |  |  |  |
|                                                                                                                                                |  |  |  |  |
|                                                                                                                                                |  |  |  |  |
|                                                                                                                                                |  |  |  |  |
|                                                                                                                                                |  |  |  |  |
|                                                                                                                                                |  |  |  |  |





| $\Omega$ | estion | 1 | $\Omega A$ |
|----------|--------|---|------------|
| VU       | esuon  | 1 | V4         |



Consider the simultaneous linear equations:

$$kx - 3y = k + 3$$

$$4x + (k+7)y = 1$$

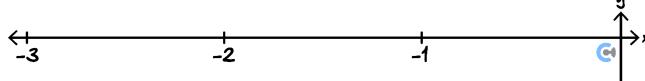
Where k is a real constant.

| a. | <b>a.</b> Find the value of $k$ for which there are infinitely many solutions. |  |
|----|--------------------------------------------------------------------------------|--|
|    |                                                                                |  |
|    |                                                                                |  |

| <b>b.</b> Fi | Find the values of $k$ for which there is a unique solution. |  |
|--------------|--------------------------------------------------------------|--|
|              | 1                                                            |  |
|              |                                                              |  |
|              |                                                              |  |
|              |                                                              |  |
|              |                                                              |  |



Question 105 (4 marks)


coordinates.



Let  $f: [-3,0] \to R$ ,  $f(x) = (x+2)^2(x-1)$ .

**a.** Show that  $(x+2)^2(x-1) = x^3 + 3x^2 - 4$ .

**b.** Sketch the graph of f on the axes below. Label the axis intercept and any stationary points with their



-2-



Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

## VCE Mathematical Methods ½

# Free 1-on-1 Support

#### Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

| 1-on-1 Video Consults                                                                                                                                             | <u>Text-Based Support</u>                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| <ul> <li>Book via bit.ly/contour-methods-consult-2025 (or QR code below).</li> <li>One active booking at a time (must attend before booking the next).</li> </ul> | <ul> <li>Message +61 440 138 726 with questions.</li> <li>Save the contact as "Contour Methods".</li> </ul> |

Booking Link for Consults bit.ly/contour-methods-consult-2025



Number for Text-Based Support +61 440 138 726

