

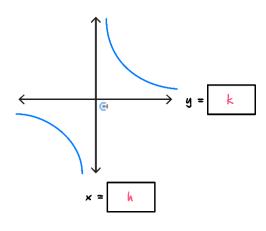
Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Functions & Relations Exam Skills [0.9]

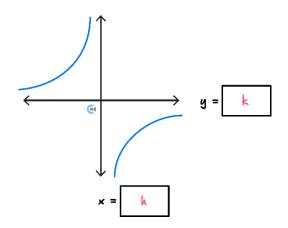
Workshop

Error Logbook:

New Ideas/Concepts	Didn't Read Question
Pg / Q #:	Pg / Q #:
Algebraic/Arithmetic/ Calculator Input Mistake	Working Out Not Detailed Enough
Pg / Q #:	Pg / Q #:



Section A: Recap


Rectangular Hyperbola

$$y = \frac{a}{x - h} + k$$

Where, a > 0

Where, a < 0

Steps:

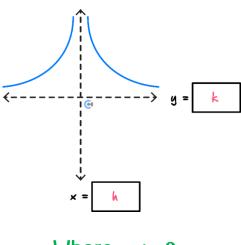
- 1. Find the horizontal and vertical asymptotes and plot them on the axis.
- **2.** Find the x- and y-intercepts and plot on the axes (if they exist).
- **3.** Identify the shape of the graph by considering any reflections, and sketch the curve.

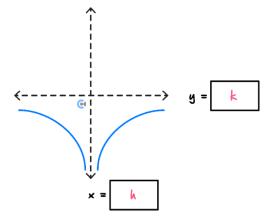
Finding the Equation of a Hyperbola from its Graph

 \blacktriangleright We generally need three facts (h, k, and a) about the hyperbola.

$$y = \frac{a}{x - h} + k$$

Steps:


- 1. Look for the asymptotes.
- **2.** Sub in a point to find the value of a.


Truncus

$$y = \frac{a}{(x-h)^2} + k$$

Where, a > 0

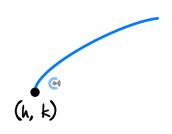
Where, a < 0

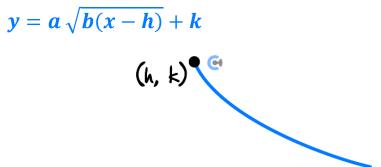
- > Steps:
 - 1. Find the horizontal and vertical asymptotes and plot them on the axis.
 - 2. Find the x- and y-intercepts and plot on the axes (if they exist).
 - 3. Identify the shape of the graph by considering any reflections and sketch the curve.

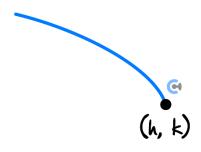
Finding the Equation of a Truncus from its Graph

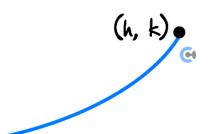
We generally need three facts (h, k), and a) about the truncus.

$$y = \frac{a}{(x-h)^2} + k$$


- Steps:
 - Look for the asymptotes.
 - Sub in a point to solve the value of a.


Square Root Functions


$$y = a\sqrt{b(x-h)} + k$$


Where, a > 0 and b > 0.

Where, a < 0 and b > 0.

Where, a > 0 and b < 0.

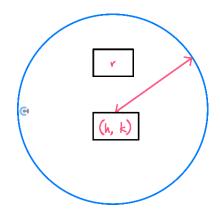
Where, a < 0 and b < 0.

- Steps for sketching roots:
 - **1.** Find the starting point (h, k).
 - **2.** Find the x- and y-intercepts and plot on the axes (if they exist).
 - **3.** Identify the shape of the graph by considering any reflections and sketch the curve.

Space for Personal Notes

CONTOUREDUCATION

Finding the Equation of a Root Function from its Graph

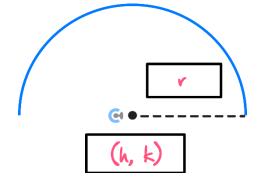

We generally need three facts about the root function.

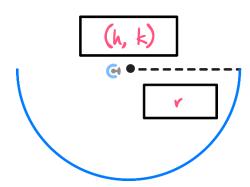
$$y = a\sqrt{\pm(x-h)} + k$$

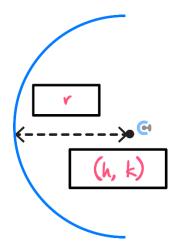
- > Steps:
 - **1.** Look for the starting point (h, k).
 - **2.** Sub in a point to solve the value of a.

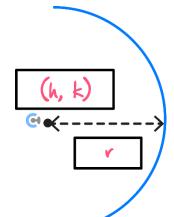
Circles

$$(x-h)^2 + (y-k)^2 = r^2$$


Where, r > 0


- **Centre:** (*h*, *k*)
- Radius: r
- > Steps:
 - 1. Find the centre of the circle.
 - 2. Find the radius of the circle.
 - **3.** Find axes intercepts (if they exist).
 - **4.** Identify the shape of the graph and sketch the curve.


Semicircles



$$y = \pm \sqrt{r^2 - (x - h)^2} + k$$

$$x = \pm \sqrt{r^2 - (y - k)^2} + h$$

- > Steps:
 - 1. Find the centre of the semicircle.
 - 2. Find the radius of the circle.
 - **3.** Find axes intercepts if they exist.
 - **4.** Identify the shape of the graph and sketch the curve.

Space for Personal Notes

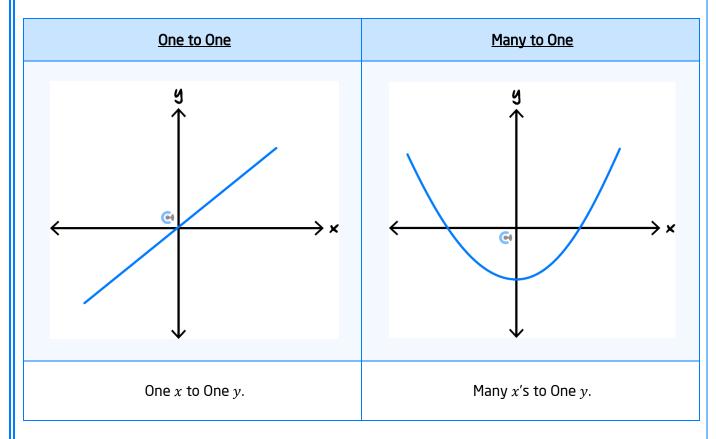
CONTOUREDUCATION

Finding the Equation of a Root Function from its Graph

We generally need three facts about circles/semicircles.

$$(x-h)^2 + (y-k)^2 = r^2$$

$$y = \pm \sqrt{r^2 - (x - h)^2} + k$$


$$x = \pm \sqrt{r^2 - (y - k)^2} + h$$

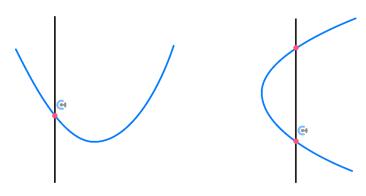
- > Steps:
 - **1.** Identify the centre, (h, k).
 - **2.** Identify the radius, r.



Types of Relations

There are four types of relations:

Functions


$$y = f(x)$$

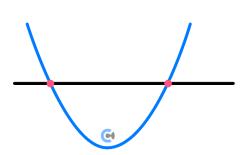
Functions are relations which make one y-value at any given x-value.

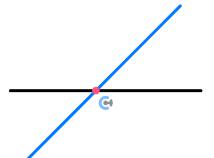
Vertical Line Test

Definition: Tells apart between functions and non-function relations.

Passes : Function

Fails : Not Function


Every function only intersects a vertical line once.


Horizontal Line Test

Definition: Tells apart between many-to-one and one-to-one functions. (And relations.)

Fails: Many to one

Passes: One to one

Set Operators

Intersection: "AND"

 $A \cap B =$ What values are in set A AND in set B.

Union: "OR"

 $A \cup B =$ What values are in set $A \cap B =$ OR in set $B \cap B =$

Set difference: "Except"

 $A \setminus B =$ What values are in set A, except those also in set B.

Interval Notation

Parentheses (non-inclusive):

$$x \in (a, b) \Rightarrow a < x < b$$

Square brackets [inclusive]:

$$x \in [a, b] \Rightarrow a \le x \le b$$

Maximal Domain

- The maximal domain is the biggest possible domain for a rule without committing a mathematical crime.
- In Methods, we need to consider 3 important rules:

$$\sqrt{z}$$
, $z \geq 0$

$$\log(z)$$
, $z>0$

$$\frac{1}{z}$$
, $z \neq 0$

Range

The range is the possible value for the output of a function.

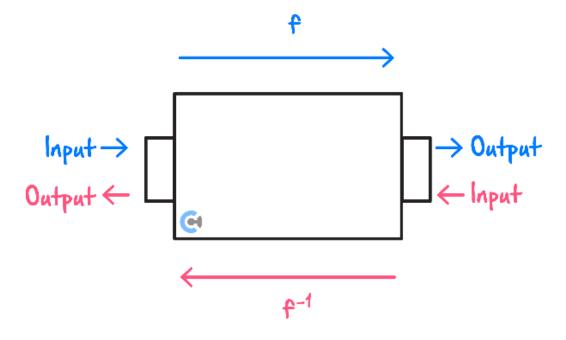
Functional Notation

$$f: Domain \rightarrow Codomain, f(x) = Rule$$

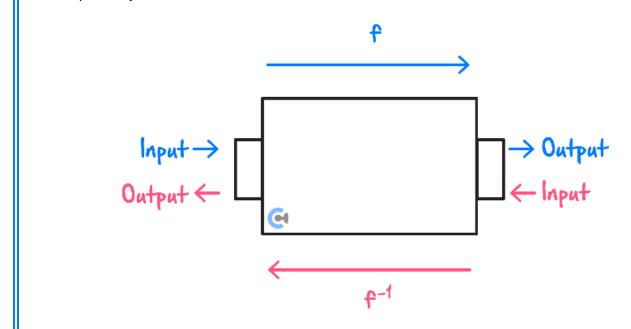
- Codomain is simply all the values the function works within.
- Codomain is not the same as range.

Piecewise (Hybrid) Functions

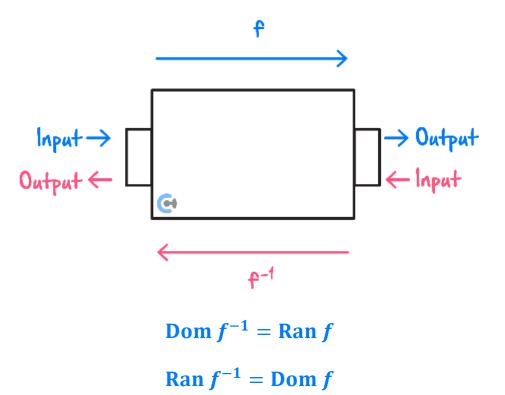
Series of functions.

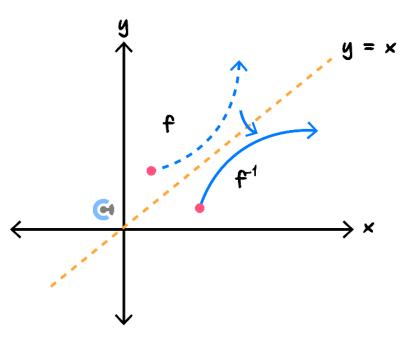

$$h(x) = \begin{cases} f(x), & Domain_1 \\ g(x), & Domain_2 \end{cases}$$

- ightharpoonup Domain₂ represent the x-values for which the two functions are defined.
- The two domains do not have to join!

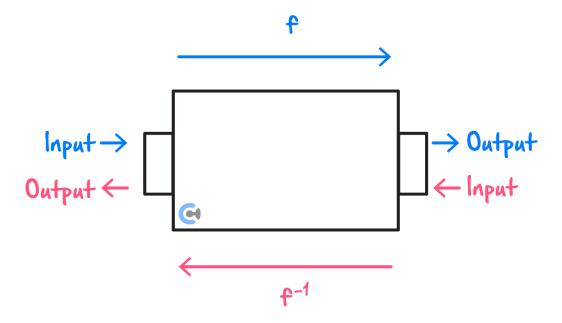

Inverse Relation

Solving for an Inverse Relation


Swap x and y.

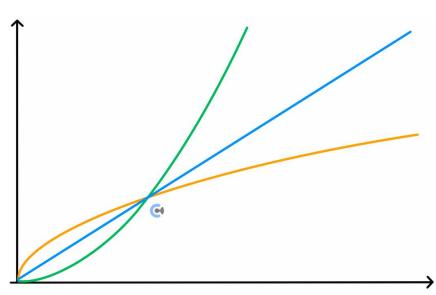

Domain and Range of Inverse Functions

Symmetry of Inverse Functions



linverse functions are always symmetrical around y = x.

Validity of Inverse Functions



Requirement for Inverse Function:

f needs to be 1 : 1.

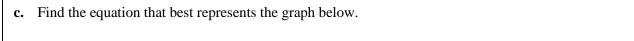
$$f(x) = x \text{ OR } f^{-1}(x) = x$$

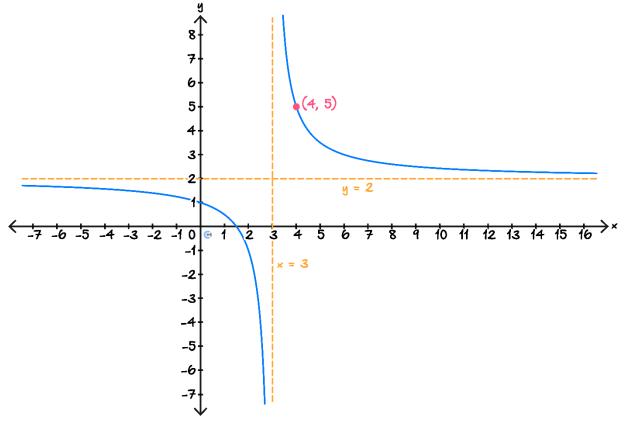
Section B: Warmup (5 Marks)

INSTRUCTION:

- Regular: 5 Marks. 5 Minutes Writing.
- **Extension: Skip**

Question 1 (5 marks)


a. Let $f : [a, \infty) \to \mathbb{R}, f(x) = (x - 3)^2 + 4$.


Determine the minimal value of a such that, f^{-1} exists.

b. Let $g: (-\infty, b] \to \mathbb{R}$, $f(x) = x^2 + 4x + 1$.

Determine the minimal value of b such that, g^{-1} exists.

Space for Personal Notes

CONTOUREDUCATION

Section C: Exam 1 Questions (19 Marks)

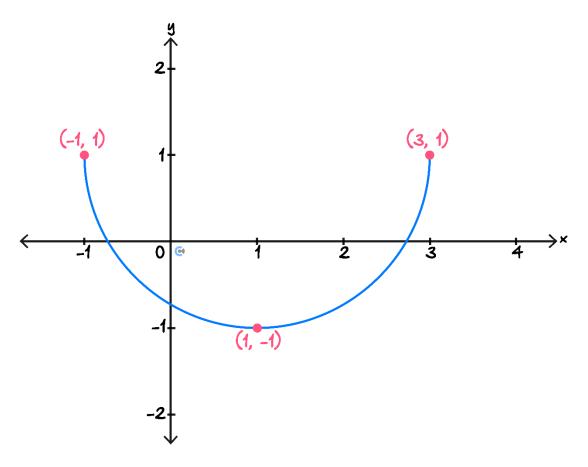
INSTRUCTION:

- Regular: 19 Marks. 28 Minutes Writing.
- > Extension: 19 Marks. 19 Minutes Writing.

Question 2 (5 marks)

Consider the function $f(x) = \frac{3}{x-3} + 5$, defined on its maximal domain.

- **a.** Write down the maximal domain of f. (1 mark)
- **b.** Find the rule and domain of the inverse function, h^{-1} , of h. (2 marks)


VCE Methods ½ Questions? Message +61 440 138 726

c.		
	Find the point(s) of intersection between h and h^{-1} . (2 marks)	
		

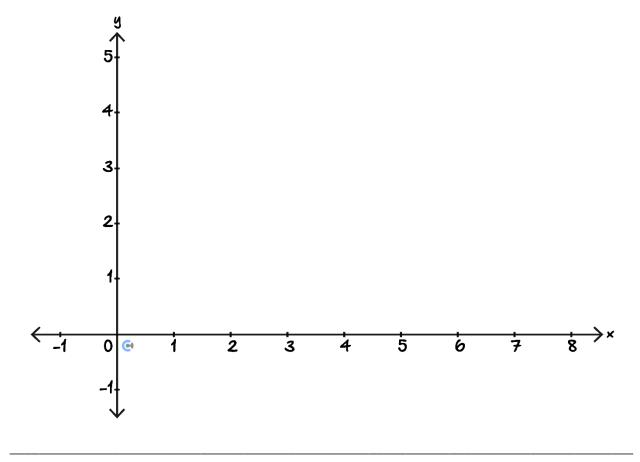
Question 3 (6 marks)

Consider the function f that describes a semi-circle. The graph of f is shown below.

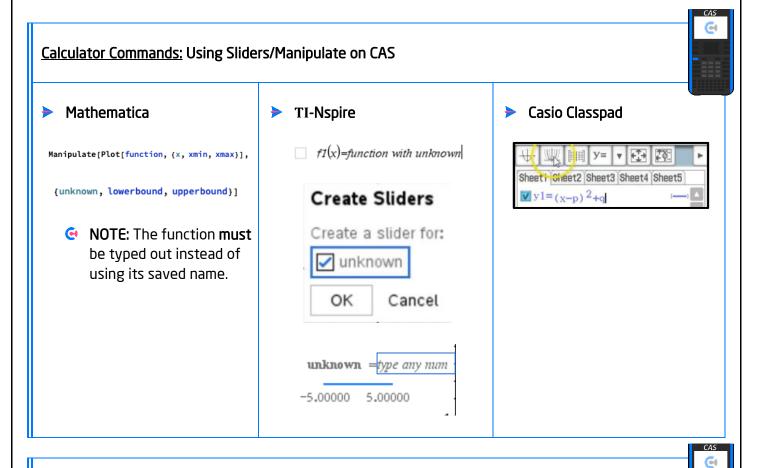
- **a.** State the domain of f. (1 mark)
- **b.** Find the rule for f(x). (2 marks)

VCE Methods ½ Questions? Message +61 440 138 726

c. Hence, find all axes intercepts of the graph of $y = f(x)$. (3 marks)	
	
Space for Personal Notes	



Question 4 (8 marks)				
Consider the function:				
$f:[a,\infty)\to\mathbb{R}, f(x)=x^2-3x+4$				


c. Write the rule for $f^{-1}(x)$ in the form $f^{-1}(x) = a\sqrt{4x - b} + \frac{3}{2}$, where $a, b \in \mathbb{R}$. (1 mark)

d. Sketch the graph of y = f(x) and $y = f^{-1}(x)$ on the axes below. Label all endpoints and points of intersection with coordinates. (3 marks)

Section D: Tech Active Exam Skills

Calculator Commands: Finding Maximal Domain

Mathematica

FunctionDomain[func, x]

- TI-Nspire
- Type up domain (or find it under the book button).

domain(func,x)

- Casio Classpad
- Sketch the function and analyse.

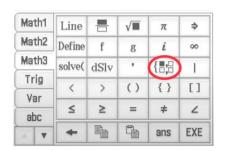
Space for Personal Notes

Calculator Commands: Defining Hybrid Functions on CAS

CAS CI

- Mathematica
 - Piecewise

Piecewise $[\{\{val_1, cond_1\}, \{val_2, cond_2\}, ...\}]$


Represents a piecewise function with values val_i in the regions defined by the conditions $cond_i$.

TI-Nspire

func 1,dom 1 func 2,dom 2 Casio Classpad

Calculator Commands: Finding the Equation of a Polynomial that Passes Through Points

- Given n points, we can find a degree n-1 polynomial that passes through all of these points.
- **Example:** Find the equation of the quadratic function that passes through the points (0,6), (2,2), and (3,3).
- TI:

Define
$$f(x)=a \cdot x^2 + b \cdot x + c$$

Solve $(f(0)=6 \text{ and } f(2)=2 \text{ and } f(3)=3,a,b,c)$
 $f(x)|a=1 \text{ and } b=-4 \text{ and } c=6$
 $f(x)|a=1 \text{ and } b=-4 \text{ and } c=6$

Casio:

define
$$f(x) = a*x^2 + b*x + c$$
 done
$$\begin{cases} f(0)=6 \\ f(2)=2 \\ f(3)=3 \\ a,b,c \end{cases}$$

$$\{a=1,b=-4,c=6\}$$

$$x^2-4\cdot x+6$$

Mathematica:

In[9]:=
$$f[x_{-}] := a x^2 + b x + c$$

In[10]:= $Solve[f[0] := 6 \&\& f[2] := 2 \&\& f[3] := 3]$

Out[10]:= $\{\{a \to 1, b \to -4, c \to 6\}\}$

In[11]:= $f[x] /. \{a \to 1, b \to -4, c \to 6\}$

Out[11]:= $6 - 4 \times + \times^2$

Calculator Commands: Turning Point

- ALWAYS sketch the graph to find approximate bounds for where the turning point you want is located.
- To find a local maximum, we maximise the function over a specific domain.
- To find a local minimum, we minimise the function over a specific domain.
- TI and Casio: Use fmin(expression, variable, lower (optional), upper (optional)) or fmax(expression, variable, lower (optional), upper (optional)).
- ightharpoonup TI: Menu $ightharpoonup 4
 ightharpoonup rac{7}{8}$.

Define
$$f(x)=x^3-4\cdot x$$

$$\int \frac{2\cdot\sqrt{3}}{3}$$

$$\int \frac{2\cdot\sqrt{3}}{3}$$

$$\int \frac{-16\cdot\sqrt{3}}{3}$$

Casio: Action \rightarrow Calculation $\rightarrow fmin/fmax$

$$fmin(x^3-4x, x, 0, 2)$$

$$\left\{ \text{MinValue} = \frac{-16 \cdot \sqrt{3}}{9}, x = \frac{2 \cdot \sqrt{3}}{3} \right\}$$

CONTOUREDUCATION

- Mathematica: Minimise[] and Maximise[] commands.
- Minimise [f[x], x] will minimise f[x] over its whole domain.
- To restrict the domain, we must use Minimise[$\{f[x], a \le x \le b\}, x$].

In[34]:= Minimize[{x^3-4x, 0 < x < 2}, x]
Out[34]=
$$\left\{-\frac{16}{3\sqrt{3}}, \left\{x \to \frac{2}{\sqrt{3}}\right\}\right\}$$

Space for	Personal	Notes
-----------	----------	-------

Section E: Exam 2 Questions (30 Marks)

INSTRUCTION:

- Regular: 30 Marks. 45 Minutes Writing.
- Extension: 30 Marks. 30 Minutes Writing.

Question 5 (1 mark)

The function, f defined by $f: A \to \mathbb{R}$, $f(x) = (x-1)^2 + 3$ will have an inverse function if its domain A is:

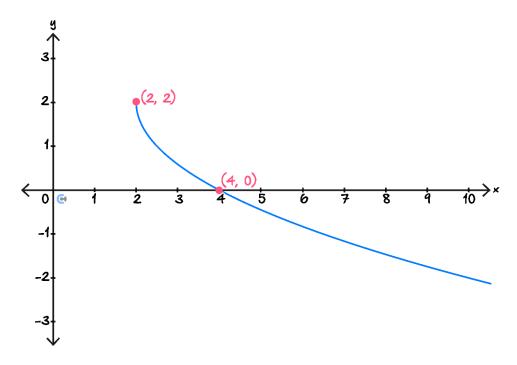
- \mathbf{A} . \mathbb{R}
- **B.** $(-\infty, 3]$
- **C.** [3, 10]
- **D.** $[0, \infty)$

Question 6 (1 mark)

Which one of the following functions does **not** have an inverse function?

- **A.** $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x 5
- **B.** $g:[0,\infty)\to \mathbb{R}, g(x)=x^2$
- C. $h: \mathbb{R} \to \mathbb{R}, h(x) = x^3$
- **D.** $k: [-2,2] \to \mathbb{R}, k(x) = \sqrt{4-x^2}$

Space for Personal Notes


Question 7 (1 mark)

The linear function, $f: D \to \mathbb{R}$, f(x) = 3 - x has a range of [-4, 6). The domain of f is:

- **A.** (-5,1]
- **B.** (-3,7]
- C. (-2,7)
- **D.** [-3, 7]

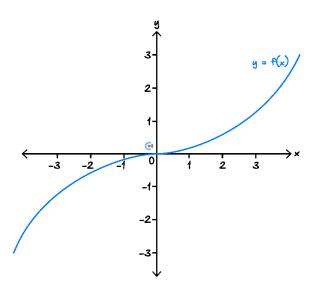
Question 8 (1 mark)

The rule for the function shown in the graph below could be:

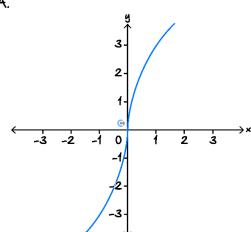
A.
$$y = \sqrt{2x - 4} + 2$$

B.
$$y = -\sqrt{2x-4} + 2$$

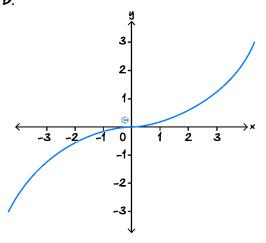
C.
$$y = \sqrt{x-2} + 2$$


D.
$$y = -\sqrt{x-2} + 2$$

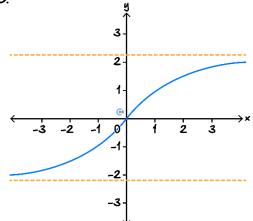
Space for Personal Notes

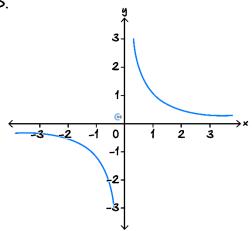

Question 9 (1 mark)

The graph of the function with equation, y = f(x) is shown below.



Which one of the following is most likely to be the graph of the inverse function?


A.


В.

C.

D.

Question 10 (1 mark)

The equation $x^3 - 3x = k$ always has three real solutions for:

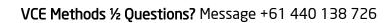
- **A.** k > 2
- **B.** $k \in [-2, 2]$
- **C.** $k \in (-2, 2)$
- **D.** k < 2

Question 11 (13 marks)

The temperature of a cooling object follows a hyperbolic model given by *T*:

$$T(x) = \frac{120}{x+2} + 20$$

where, T(x) represents the temperature (in degrees Celsius) of the object, x minutes after it was removed from an oven.

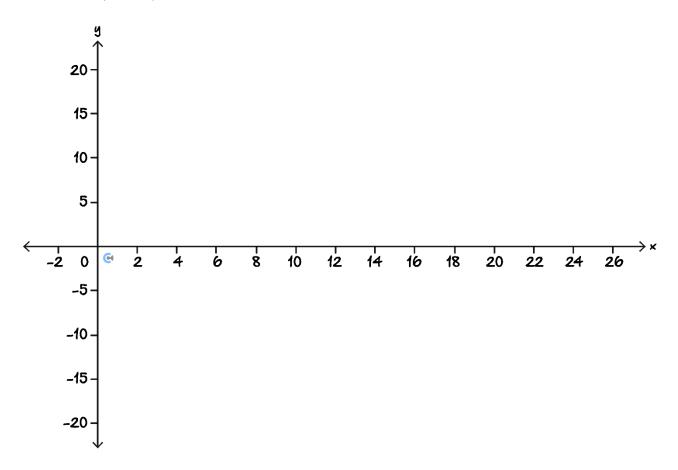

a. What is the implied domain of the function T? (i.e. what values of x make sense?) (1 mark)

b. Sketch the graph of T(x), over its implied domain, on the axes below. Label any endpoints with coordinates and asymptotes with equations. (2 marks)

80-70-60-50-40-30-20-10--10 0 10 20 30 40 50 60 70 80 90 100 ×

с.	Find the temperature of the object after $x = 5$ minutes. (1 mark)
l.	Determine the time x , when the temperature of the object is 50°C. (2 marks)
e.	Find the rule and domain of the inverse function $T^{-1}(x)$. (2 marks)
•	Describe the information that $T^{-1}(30)$ gives us in relation to this scenario. (1 mark)

g.	Calculate the average change in temperature in degrees per minute from $x = 1$ to $x = 11$ minutes. Give your answer correct to two decimal places. (2 marks)
h.	The object's temperature is said to be "stabilising" when the average rate of change in temperature from time $x = b$ to $x = 60$ is less than -0.1 degrees per minute. Find the time, correct to the nearest minute, at which
	the object's temperature first begins stabilising. (2 marks)
<u></u>	ace for Dersonal Notes
β	ace for Personal Notes



Question 12 (11 marks)

Contour Park constructs a roller that is made up of three different sections of track. Let h be the function that determines the height of the roller coaster above the ground, according to its horizontal position x. h is modelled by the rule:

$$\begin{cases} 4x & 0 \le x \le 5 \\ x^2 - 22x + 105 & 5 < x \le 14 \\ -\frac{8}{x - 13} + 1 & 14 < x \le 22 \end{cases}$$

a. Sketch the graph of h(x) on the axes below. Label all endpoints, intercepts, and turning points with coordinates. (4 marks)

b. State the maximum height of the roller coaster above the ground. (1 mark)

c.	Find the values of x for which, the roller coaster is 15 metres below the ground. (2 marks)		
d.	Find the values of x for which, the roller coaster is below the ground. Express your answer using interval notation. (2 marks)		
dec	e roller coaster is a huge success, however a complaint is that the ride is too quick. To rectify this issue, it is sided that instead of the roller coaster track ending at $x = 21$, a new track with the exact same shape as $h(x)$ l be constructed from this point.		
	Define the function $h_1(x)$ which describes the linear section of the new track. (2 marks)		
Sp	Space for Personal Notes		

Section F: Extension Exam 1 (9 Marks)

INSTRUCTION:

- Regular: Skip
- Extension: 9 Marks. 13 Minutes Writing.

Question 13 (9 marks)

Consider the function, $f(x) = \frac{1}{x-4}$.

a. Find the values of x for which, $f^{-1}(x) > f(x)$. (4 marks)

VCE Methods ½ Questions? Message +61 440 138 726

Now, let $g:(-\infty,k)\to\mathbb{R}$, $g(x)=\frac{1}{k-x}$, where k is a real constant. **b.** Find the rule and domain for the inverse function, g^{-1} , in terms of k. (2 marks) Find the exact value of k so that g and g^{-1} have one point of intersection. (3 marks) **Space for Personal Notes**

Section G: Extension Exam 2 (15 Marks)

INSTRUCTION:

- Regular: Skip
- Extension: 15 Marks. 22 Minutes Writing.

Question 14 (1 mark)

The range of the function given by $f:(0,4] \to \mathbb{R}$, $f(x)=x^2-2x+b$ is:

A.
$$(b-1, b+8)$$

B.
$$[b-1, b+8]$$

D.
$$(b-1, b+8]$$

Question 15 (1 mark)

The functions, $f(x) = \log_2(a - x)$ and $g(x) = -\sqrt{x + a}$ are defined on their maximal domains and $a \in \mathbb{R}^+$.

The domain of $f(x) \times g(x)$ is:

A.
$$[-a,a)$$

B.
$$[-a, a]$$

C.
$$(-a, a)$$


D.
$$\mathbb{R} \setminus \{a\}$$

Space for Personal Notes

Question 16 (1 mark)

The graph of the function f is shown below.

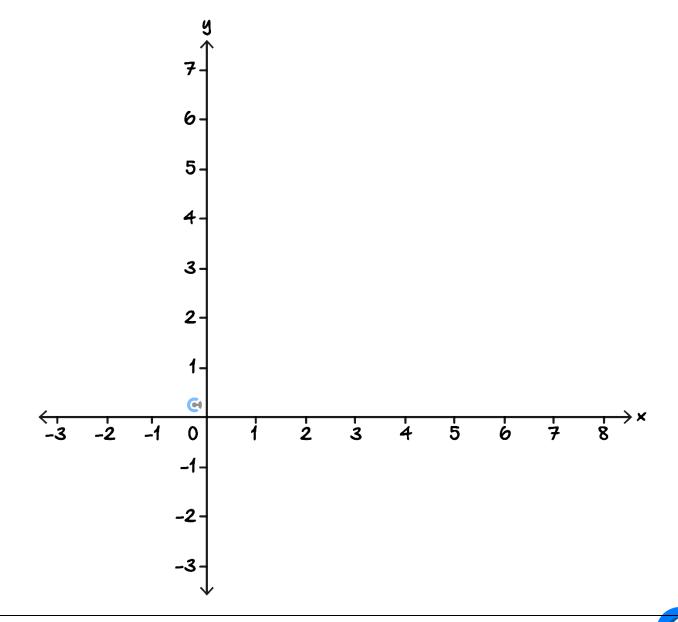
In order for the inverse f^{-1} to exist, a possible restricted domain of f is:

- **A.** $x \in [-3,0] \cup [3,0]$
- **B.** $x \in [-1,2)$
- C. $x \in [0, 3]$
- **D.** $x \in [-3,0) \cup [3,0]$

Question 17 (1 mark)

The equation $12x^5 + 15x^4 - 60x^3 - 30x^2 + 120x = k$ has one real solution for:

- **A.** $k \in (-87, 57)$
- **B.** $k \in (-\infty, -87) \cup (-24, \infty)$
- C. $k \in (-87, -24)$
- **D.** $k \in (-\infty, 57)$



Question 18 (11 marks)

Consider the function, $f: [\sqrt{3}, \infty) \to \mathbb{R}, f(x) = \sqrt{3x^2 - 9}$.

a. Define f^{-1} , the inverse function of f. (2 marks)

b. Sketch the graphs of y = f(x), $y = f^{-1}(x)$, on the axes below. Label all axes intercepts and points of intersection with coordinates. (3 marks)

Now, consider the one-to-one function, defined on its maximal domain, $g:[a,\infty)\to\mathbb{R}$, where $g(x) = \sqrt{kx^2 - 9}$ and $a, k \in \mathbb{R}^+$. c. i. Find the value of a in terms of k. (1 mark) ii. Find the value of k such that, g and g^{-1} intersect at (2, 2). (2 marks)iii. Find the value(s) of k for which, g and g^{-1} do not intersect each other. (2 marks)

VCE Methods ½ Questions? Message +61 440 138 726

d. As x gets larger and larger (i.e. as $x \to \infty$), the function $g(x)$ approaches, but never touches, a linear function of the form $y = mx$. State the value of m in terms of k . (1 mark)				
pace for Personal N	otes			
,				

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

