

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Polynomials Exam Skills [0.6]

Workshop

Error Logbook:

Mistake/Misco	nception #1	Mistake/Misco	nception #2
Question #: 3 (Fxan	Page #:	Question #: $5(\mathcal{E}I)$	Page #:
Notes: $(x + \alpha)^3$ $(x-\alpha)^3 = x^3$	$3 = \chi^{3} + 3\alpha \times^{2} + 3\alpha^{2} \times 6$ $3\alpha \times^{2} + 3\alpha^{2} \times -\alpha^{3}$	Notes: Check for in guarantees to see if x is	e values of lrater factor dit!
		•	
A4' . I (A4'	.: "	54:	
Mistake/Misco	nception #3	Mistake/Misco	nception #4
Mistake/Miscon Question #:	nception #3 Page #:	Mistake/Misco Question #:	nception #4 Page #:
	•		•
Question #:	•	Question #:	•

Section A: Recap

Degree of Polynomial Functions

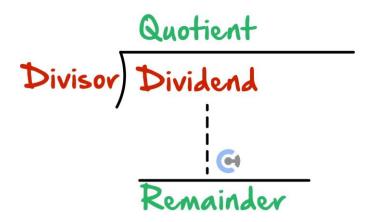
Degree = Highest Power of the Polynomial

Roots of Polynomial Functions

Roots = x-intercept

Polynomial Long Division

Division of polynomials:



$$\frac{\textit{Dividend}}{\textit{Divisor}} = \textit{Quotient} + \frac{\textit{Remainder}}{\textit{Divisor}}$$

CONTOUREDUCATION

Remainder Theorem

femander $\frac{f(\kappa)}{\kappa - a} = P(a)$

Definition:

• Finds the remainder of long division without the need of long division,

when P(x) is divided by $(x - \alpha)$, the remainder is $P(\alpha)$.

- Steps
 - **1.** Find x-values which make the divisor equal to 0.
 - 2. Substitute it into the dividend function.

Factor Theorem

For every *x*-intercept, there is a factor:

If
$$P(\alpha) = 0$$
 then, $(x - \alpha)$ is a factor of $P(x)$.

Factorising Polynomials

- The steps are:
 - Find a single root by trial and error.
 - (Factor Theorem: Substitute into the function and see if we get zero.)
 - Use long division to find the quadratic factor.
 - Factorise the quadratic.

Rational Root Theorem

Rational Root Theorem narrows down the possible roots.

$$Potential\ root = \pm \frac{Factors\ of\ constant\ term\ a_0}{Factors\ of\ leading\ coefficient\ a_n}$$

If the roots are rational numbers, the roots can only be $\pm \frac{\text{Factors of constant term } a_0}{\text{Factors of leading coefficient } a_n}$

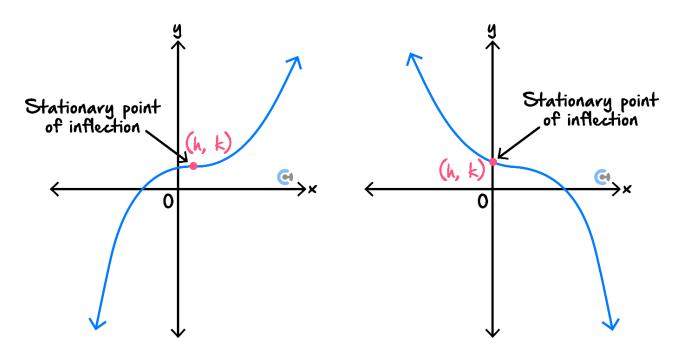
Sum and Difference of Cubes

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Graphs of $a(x-h)^n + k$, where n is an Odd Positive Integer

All graphs look like a "cubic".

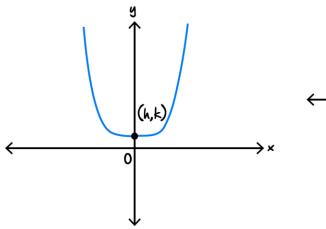


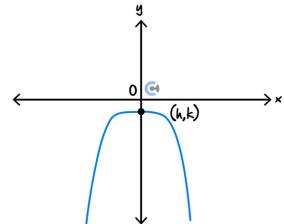
- \blacktriangleright The point (h, k) gives us the stationary point of inflection.
- \blacktriangleright *n* cannot be 1 for this shape to occur!

ONTOUREDUCATION

Graphs of $a(x - h)^n + k$, where n is an Even Positive Integer

All graphs look like a "quadratic".

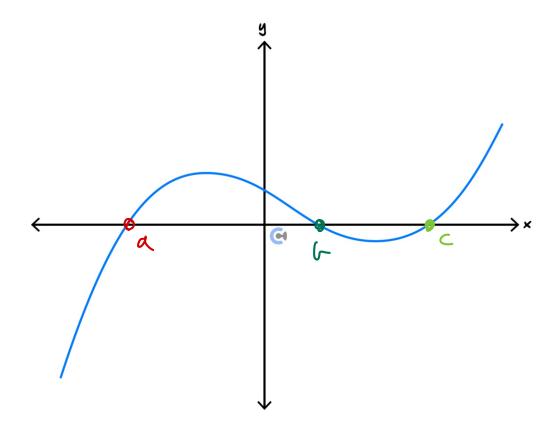




The point (h, k) gives us the turning point.

Graphs of Factorised Polynomials

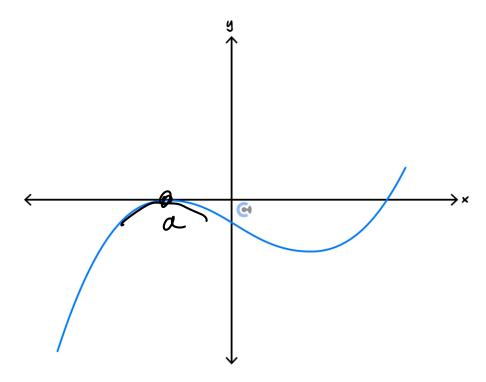
All non-repeated linear factors correspond to x-intercepts of the graph.



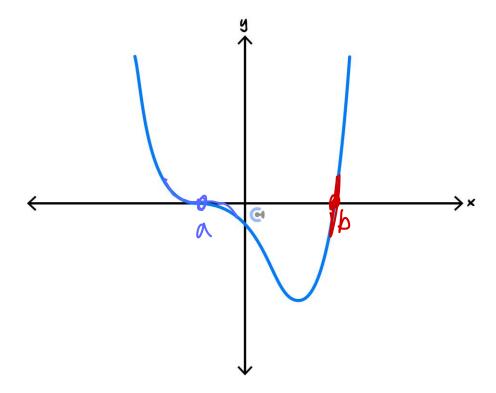
E.g., f(x) = (x-a)(x-b)(x-c) results in x-intercepts at (a,0), (b,0), and (c,0).

CONTOUREDUCATION

 \blacktriangleright All squared linear factors correspond to x-intercepts and T.P. of the graph.



- E.g., $f(x) = (x a)^2(x b)$ will have an x-intercept (a, 0) which is also a local minimum/maximum.
- All cubed linear factors correspond to *x*-intercepts and SPI of the graph.



E.g., $f(x) = (x - a)^3 (x - b)$ has an x-intercept (a, 0) which is also a stationary point of inflection.

Steps to Graphing Factorised Polynomials

- Steps:
 - **1.** Plot *x*-intercepts.
 - 2. Determine whether the polynomial is positive or negative.
 - **3.** Use the repeated factors to deduce the shape.
 - Non Repeated: Only x-intercept.
 - Even Repeated: *x*-intercept and a turning point.
 - Discrete the order of the contract of the cont

Solving the Polynomial Inequality f(x) > 0

- Steps:
 - **1.** Find the x-intercepts.
 - **2.** Sketch the polynomial.
 - **3.** Shade the places where the y-values are positive.

Definition

When does a cubic have n solutions?

- Steps:
 - 1. Factorise out the x term.
 - **2.** Since the x term gives 1 solution, use discriminant to find when the quadratic has n-1 solutions.

Bisection Method

- > Step 1: Pick a random interval [a, b] where $f(a) \times f(b) = \text{Negative}$.
- Step 2: Find a midpoint to estimate the root.

where
$$m = \frac{a+b}{2}$$

Step 3: Create a new interval [a, b] by making m either new a or new b.

If
$$f(a) \times f(m) < 0$$

New Interval: [a, m]

If
$$f(b) \times f(m) < 0$$

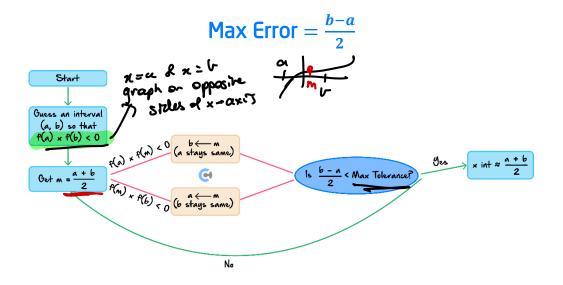
New Interval: [m, b]

- Step 4: Repeat until the interval becomes short enough for good accuracy.
 - \bullet The smaller the interval [a, b], more accurate our estimation gets.

If
$$\frac{b-a}{2}$$
 < Max Tolerance,

We stop.

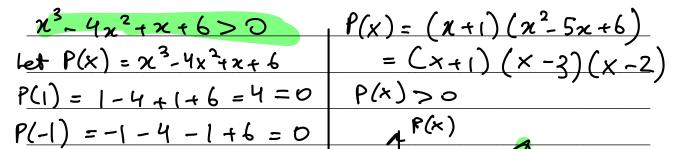
Maximum error is half of the width of the interval.

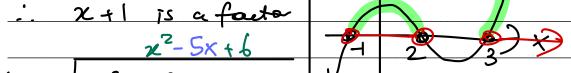


Section B: Warmup

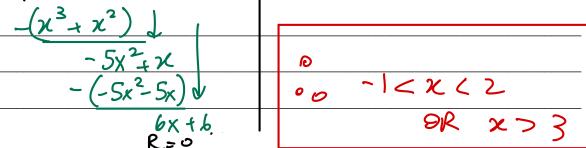
Question 1

a. Solve the inequality $x^3 + x + 6 > 4x^2$.





X+1 23-4x2+x+6



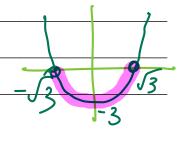
b. Find the values of k such that $x^3 + 2kx^2 + 3x = 0$ has only one real solution.

$$\chi(\chi^2+2k\chi+3)=0$$

Need 1 < 0 (No Solutions for Quad)

 $(2k)^2 - 4(1)(3) < 0$

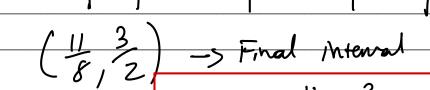
$$\frac{4k^2 - 12 < 0}{k^2 - 3 < 0}$$



Ans: -53 < k < 53

c. Apply the bisection method with initial interval [1,2] and tolerance 0.1 to find an approximate solution to the equation $x^2 - 2 = 0$.

α	16	$M = \frac{a+b}{2}$	f(a)	1 f(b)	f(m)	Error
l	2	3/2		2	2-8 =4	0.5
1	3/2	5/4	-1	14	25 - 32 LO	0.25
5/4	35	We.	<0	1/4	121 - 128 <0	0.129
الما	3/				01 67	10.06
8	12					1



Section C: Exam 1 (23 Marks)

Question 2 (9 marks)

Let $f(x) = ax^3 - 5x^2 + bx + 9$. When f(x) is divided by x - 2 the remainder is -7 and when f(x) is divided by x + 1 the remainder is 8.

a. Show that a = 2 and b = -6. (2 marks)

$$f(2) = -7$$
: $8\alpha - 20 + 2b + 9 = -7$

$$f(-1) = 8 : -a - 5 - b + 9 = 8$$

$$[1]-[2]: 3a=6$$

$$a = 2$$

$$2+b=-4$$

1

b. Express f(x) as the product of three linear factors. (3 marks)

•	$f'(x) = 2x^2 - 5x^2 - 6x + 9$								
f(1) = 2 - 5 - 6 + 9 = 11-11=0	•								2

$$f(x) = (x-1)(2x^2-3x-9)$$

$$\therefore x - 1$$
 is a factor $2x^2 \cdot 3x = 9$

01 2 2 2 2 1

$$= (x-1)(2x^{2}-6x+3x-9)$$

$$= (x-1)(2x(x-3)+3(x-3))$$

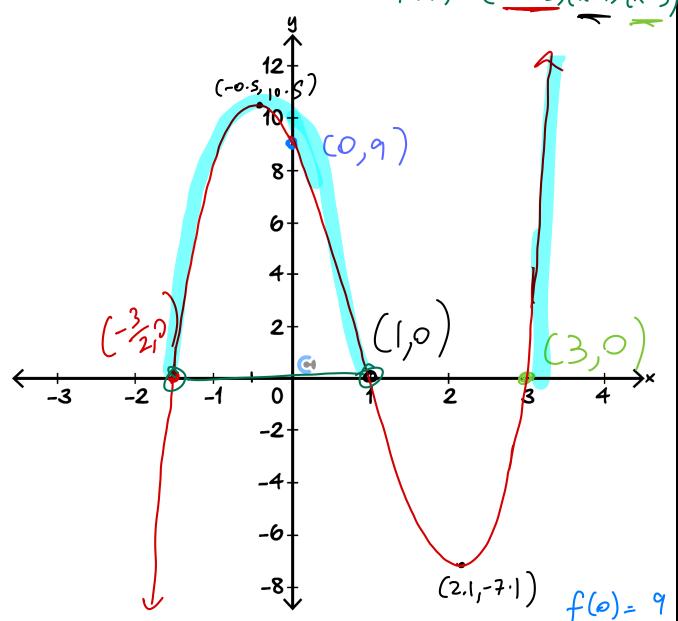
$$\frac{2x^{2}-3x-9}{2x^{2}-5x^{2}-6x+9}$$

$$\frac{-3x^2-6x}{-(-3x^2+3x)}$$

CONTOUREDUCATION

c. Sketch the graph of y = f(x) on the axes below. Label all axes intercepts. Note that f has turning points at

approximately (-0.5,10.5) and (2.1, -7.1). (2 marks) $f(x) = (2 \times +3)(x-1)(x-3)$



d. Hence, solve the inequality $2x^3 - 5x^2 - 6x > -9$. (2 marks)

 $2\pi^{3}-5\pi^{2}-6\pi+9>0$

(0,9

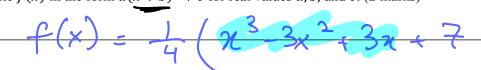
-3_cx<1 or x>3

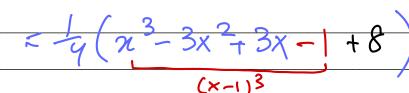
VCE Mathematical Methods $\frac{(x + b)^3}{(x + b)^3}$

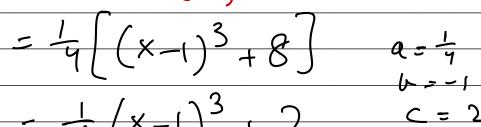
Question 3 (5 marks)

Consider the function $f(x) = \frac{x^3}{4} - \frac{3x^2}{4} + \frac{3x}{4} + \frac{7}{4}$.

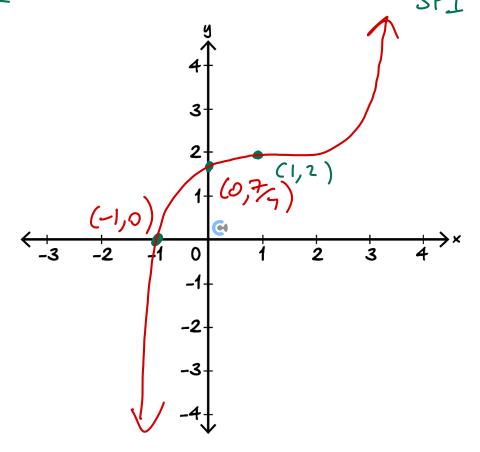
a. Write f(x) in the form $a(x+b)^3+c$ for real values a,b, and c. (2 marks)







Sketch the graph of y = f(x) on the axes below. Label any axes intercepts and stationary points of inflection with coordinates. (3 marks)



Question 4 (4 marks)

The bisection method may be used to approximate $\sqrt{3}$ by finding a root to $x^2 - 3 = 0$.

a. Use the bisection method with initial interval [1,2] and tolerance 0.1 to find an approximate solution to $x^2 - 3 = 0$. Leave your answer in the form $\frac{a}{b}$, for positive integers a and b. (3 marks)

		fln	$= \pi^2 - 3$			*.
a	6	m=ath	f(a)	4(4)	f(m)	Error = 1-a
1	2	3/2	-1	1	9-12-0	0.5
3/2	2	74	€0	1	地~~~~	0.25
3/2	44	w [E	<0	>0	169 - 192 <0	0.125
3/8	٦/	o)				0.0625
-	4					
		1				
		13 7		.5 2	13 + 74	27
	(81741		V3 ~	2	= 16

b. Determine whether $\frac{7}{4}$ is more than or less than $\sqrt{3}$. (1 mark)

J3 ~ (13, 74)

0 74753

ONTOUREDUCATION

Question 5 (5 marks)

Consider $f(x) = x^3 - 2kx^2 + 4kx + 4x$, where k is a real constant.

Find the values of k such that f(x) = 0 has:

a. One solution. (3 marks)

One solution. (3 marks)
$$f(x) = \chi \left(x^2 - 2kx + (4k + 4) \right)$$

Qual factor has
$$\Delta = (-2k)^2 - 4(1)(4k+4)$$

$$(k-2)^2-8<0$$

(2 12 20)

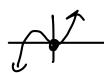
$$\frac{8}{80}$$
 2-2 $\sqrt{2}$ < $\frac{1}{2}$ < $\frac{1}{2}$

b. Two solutions. (1 mark)

$$\bigwedge = 0$$

c. Three solutions. (1 mark)

AND k = -1



R < 2-252 or k>2+252

Section D: Tech Active Exam Skills

(A)

Calculator Commands: Turning Point

- ALWAYS sketch the graph to find approximate bounds for where the turning point you want is located.
- To find a local maximum we maximise the function over a specific domain.
- To find a local minimum we minimise the function over a specific domain.
- TI and Casio: Use fmin(expression, variable, lower (optional), upper (optional)) or fmax(expression, variable, lower (optional), upper (optional)).
- ► TI: Menu $\rightarrow 4 \rightarrow \frac{7}{8}$.

Define
$$f(x) = x^3 - 4 \cdot x$$

Done

fMin
$$(f(x),x,0,2)$$

$$x = \frac{2 \cdot \sqrt{3}}{3}$$

$$f\left(\frac{2\cdot\sqrt{3}}{3}\right)$$

Casio: Action→Calculation→ fmin/fmax

$$fmin(x^3-4x, x, 0, 2)$$

$$\left\{ \text{MinValue} = \frac{-16 \cdot \sqrt{3}}{9}, x = \frac{2 \cdot \sqrt{3}}{3} \right\}$$

NOTE: TI only gives the x-value for the min/max so we then need to sub it back into our function. Casio gives us both!

CONTOUREDUCATION

Calculator Commands

- Mathematica: Minimise[] and Maximise[] commands.
- Minimise [f(x), x] will minimise f(x) over its whole domain.
- To restrict the domain, we must use Minimise[$\{f[x], a \le x \le b\}, x$].

In[34]:= Minimize[{x^3 - 4 x, 0 < x < 2}, x]
Out[34]=
$$\left\{-\frac{16}{3\sqrt{3}}, \left\{x \to \frac{2}{\sqrt{3}}\right\}\right\}$$

TI UDF: Bisection Method

- Overview:
 - \bigcirc Apply the bisection method to a function to approximate x-intercepts.
- Input:
 - **isection** (< function >, < variable >, < lower bound >, < upper bound >)
- Other Notes:
 - The program will ask for the threshold type to terminate the algorithm.
 - Select None [0] to provide a specific number of iterations.
 - Select x [1] to provide a threshold for b-a, after which the program will stop if b-a becomes smaller than the threshold.
 - Select y [2] to provide a threshold for |f(b) f(a)|, after which the program will stop if |f(b) f(a)| becomes smaller than the threshold.

Numl	oer of Itera	tions: 5						
"n"	"a"	"m"	"b"	"f(a)"	"f(m)"	"f(b)"	"b-a"	" f(b)-f(a)
0.	0.	0.5	1.	-2.	-1.75	-1.	1.	1.
1.	0.5	0.75	1.	-1.75	-1.4375	-1.	0.5	0.75
2.	0.75	0.875	1.	-1.4375	-1.23438	-1.	0.25	0.4375
3.	0.875	0.9375	1.	-1.23438	-1.12109	-1.	0.125	0.234375
4.	0.9375	0.96875	1.	-1.12109	-1.06152	-1.	0.0625	0.121094
5.	0.96875	0.984375	1.	-1.06152	-1.03101	-1.	0.03125	0.061523

\sim	•
Question	L
	\ \

 $f[X_{-}] := 2 \times 3 - 3 \times 4$

efine $f(x)=2\cdot x^3-3\cdot x-4$	Done
) a	-5
	6
.5) M	-1.75
New interval is [1.5,2], error is 0.25 so keep going	
.75) M	1.46875
New interval is [1.5,1.75], error is 0.125 so keep going	
5+1.75	1.625
2	
625)	-0.2929688
Final interval is [1.625,1.75], error is 0.0625 so we're done!	
625+1.75	1.6875
2	

Classpad

Define $f(x)=2\cdot x^3-3\cdot x-4$		
f(1)	done	
	-5	
f(2)	6	
f(1.5)		
	$-\frac{7}{4}$	
[1.5,2]		
	$\begin{bmatrix} \frac{3}{2} & 2 \end{bmatrix}$	
f(1.75)	45	
	47 32	
[1.5, 1.75]	[9 7]	
	$\begin{bmatrix} \frac{3}{2} & \frac{7}{4} \end{bmatrix}$	
f(1.625)	75	
(1.625+1.75)/2	$-\frac{75}{256}$	
(1.625+1.75)72	27 16	
approx(ans)	16	
SPF - ST COLOR	1.6875	

Section E: Exam 2 (25 Marks)

Do Seetten E!

Question 6 (1 mark)

The equation $2x^3 - 3x - 4 = 0$ has one real solution, which lies in the interval [1,2]. Approximate the solution using the bisection method with a maximum error of 0.1. What is the approximate solution?

A.
$$x \approx 1.655$$

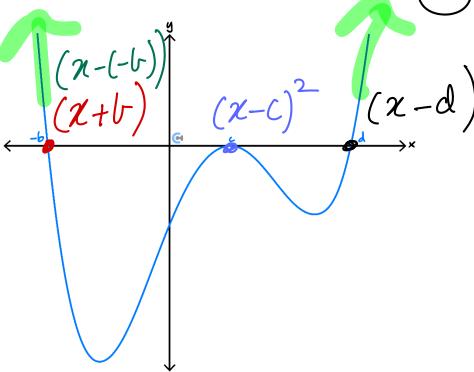
B.
$$x \approx 1.6250$$

C.
$$x \approx 1.6875$$

D.
$$x \approx 1.6225$$

Question 7 (1 mark)

The rule for a function with the graph below, where b, c, d > 0, could be:



A.
$$y = -2(x+b)(x-c)^2(x-d)$$

B.
$$y = 3(x+b)(x-c)^2(x-d)$$

C.
$$y = -2(x - b)(x - c)^2(x - d)$$

D.
$$y = 2(x - b)(x - c)^2(x - d)$$

Question 8 (1 mark)

def f(x)

The polynomial $x^3 + (a+2)x^2 + bx + 8$ is perfectly divisible by x + 2 and has remainder of 2 when divided by x - 3. The values (a, b) are:

A.
$$(-5, -6)$$

B.
$$\left(-\frac{21}{5}, -\frac{22}{5}\right)$$

$$f(3) = 2$$

$$f(3) = 2$$

CAS: Solve $\{f(3)=2\}$

C.
$$\left(-\frac{3}{5}, -\frac{9}{5}\right)$$

$$f[-2] = 0$$
 & $f[3] =$

D.
$$\left(-\frac{7}{5}, \frac{3}{5}\right)$$

Question 9 (1 mark)

All real values of x that satisfy the inequality $9x^2 - 2x^3 > 54 - 27x$ are:

A.
$$x < -3$$
 or $\frac{3}{2} < x < 6$.

B.
$$x < -6$$
 or $\frac{3}{2} < x < 3$.

C.
$$x < -3 \text{ or } x > -\frac{3}{2}$$
.

D.
$$-3 < x < \frac{3}{2}$$
 or $x > 6$.

Question 10 (1 mark)

The equation $x^3 - 3kx^2 + 5x = 0$ has exactly one solution when:

A.
$$k = \pm \frac{2\sqrt{5}}{3}$$

$$\chi(n^2-3h\chi+5)$$

B.
$$-\frac{2\sqrt{5}}{3} < k < \frac{2\sqrt{5}}{3}$$

Solut
$$(-3k)^2 - 4(s) < 0$$

C.
$$k > \frac{2\sqrt{5}}{3}$$

D.
$$k < -\frac{2\sqrt{5}}{3}$$

Question 11 (9 marks)

A car is travelling along a straight road from *A* to *C*. The car will travel along a section of road *ABC*.

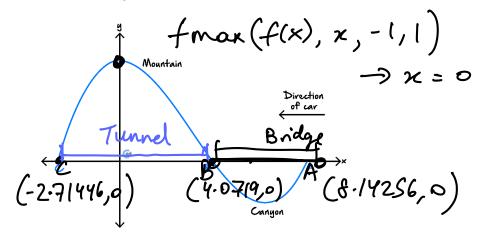
- Section AB passes along a bridge over a canyon.
- Section BC passes through a tunnel in a mountain.

From A to C, the curve of the canyon and then mountain, directly below and above the road, is modelled by the graph of:

$$y = \frac{1}{250}(px^3 + qx^2 + r)$$

Where p, q, and r are real constants.

All measurements are in kilometres and a diagram of this situation is shown below.



- **a.** The curve defined from A to C passes through the points (1,0.652), (2,0.48), and (5,-0.18).
 - i. Use this information to write down three simultaneous equations in terms of p, q, and r. Write these equations with integer coefficients. (3 marks)

$$f(1) = \frac{1}{250} (p+q+r) = 0.652$$

$$f(2) = \frac{1}{250} (5p+4q+r) = 0.48$$

$$f(3) = \frac{1}{250} (125p+25q+r) = -0.18$$

ii. Hence, verify that p = 2, q = -19, and r = 180. (1 mark)

$$[]: 2 - 19 + 180 = 163$$

$$[2]: 8(2) + 4(-19) + 180 = 120 [2]$$

$$[3]: 125(2) + 25(-19) + 180 = -45$$

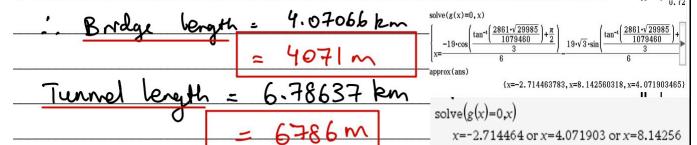
.. Solutions are ventred

b. Find the exact height of the mountain, above the road, in metres. (1 mark)

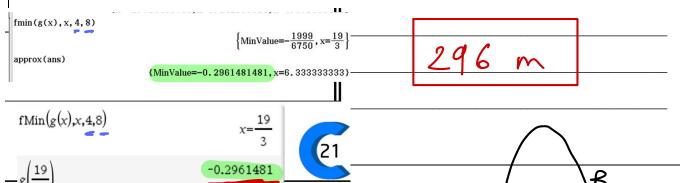
oo height = 720m

c. Find the length of the tunnel and the length of the bridge. Give your answers correct to the nearest metre. (3 marks)

Find coordinates of A, B & C (x-intercepts
Let
$$f(x) = \frac{1}{250}(2n^3-19n^2+180) = 0$$



d. Find the maximum depth of the canyon below the road. Give your answer to the nearest metre. (1 mark)



THE LOSO I OBLIGHTING CVALLE MOLECHIO

Question 12 (11 marks)

Consider the cubic polynomial $f(x) = x^3 + x^2 - 5x - 2$.

a. Explain why f(x) must have a root between x = 1 and x = 3. (1 mark)

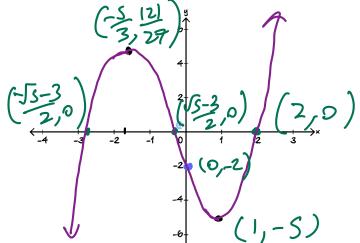
2-5<0 3)=1970

1970 Opposite sides of x-axos

Root must be between x=1 & x = 3

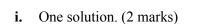
b. Write f(x) in the form f(x) = (x - a)Q(x) where a > 0 and Q(x) is a quadratic function. (1 mark)

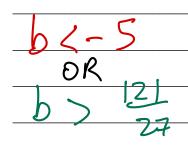
c. It is known that the graph of y = f(x) has turning points at x-values that are solutions to the equation $3x^2 + 2x - 5 = 0$. Sketch the graph of y = f(x) on the axes below. Label all axes intercepts and turning points with exact coordinates. (4 marks)



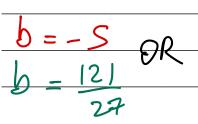
MM12 [0.6] - Polynomials Exam Skills - Workshop

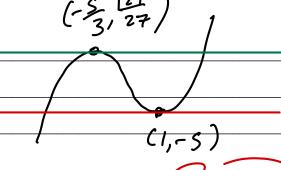
d. Find the values of b such that g(x) = b has:



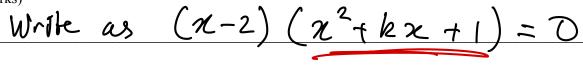


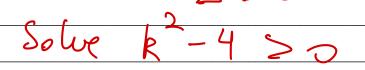
ii. Two solutions. (1 mark)





e. Find the values of k for which the equation $x^3 + (k-2)x^2 + (1-2k)x - 2 = 0$ has three solutions. (2 marks)



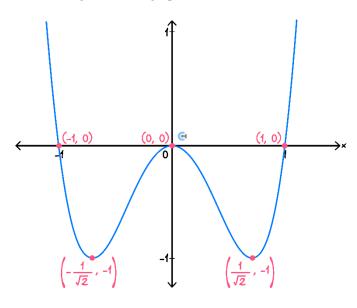


° k <-2 or k>2

Section F: Extension Exam 1 (15 Marks)

Question 13 (4 marks)

The function f(x) is a polynomial of degree 4. The graph of f is shown below.



a. Find the rule of f(x). (2 marks)

Solution: $f(x) = 4x^2(x+1)(x-1)$

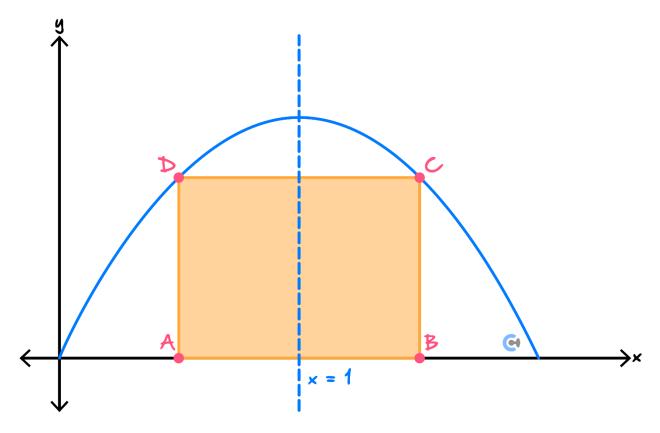
b. Find the values of k such that f(x) + k = 0, where k is a real number, has an even number of real solutions. (2 marks)

Solution: Only time there is an odd number of solutions is when k=0. Therefore $k \neq 0$.

Question 14 (6 marks)

Consider the parabola p(x) = x(2 - x), where $0 \le x \le 2$.

A rectangle *ABCD* is inscribed between the graph of p and the x-axis. Its vertices are a distance of a units from the axis of symmetry, x = 1, as shown below.



a. Find the value of α when the rectangle is a square. (3 marks)

Solution: We need base equal to height.	
p(a+1) = 2a	
(a+1)(1-a) = 2a	
$1 - a^2 = 2a$	
 $a^2 + 2a = 1$	
$(a+1)^2 = 2$	
$a = -1 \pm \sqrt{2}$	
 Only $a = \sqrt{2} - 1$ is a valid solution.	

b.	Find the rational	value of a such the	at the rectangle ABCI	I has an area of $\frac{3}{4}$ square	e units. (3 marks)

Solution: Area is given by $2a \times p(a+1) = 2a(1+a)(1-a) = 2a-2a^3$. We must solve $2a-2a^3=\frac{3}{4} \implies 8a-8a^3=3$

$$8a^3 - 8a + 3 = 0$$

Use the rational root theorem to find that $a = \frac{1}{2}$ is a solution.

Question 15 (5 marks)

Consider the function $g(x) = (x^2 - 4kx + 3)(x^2 - 2x + k)$, where k is a real number. Find all possible values of k such that g(x) has:

a. Four real roots. (3 marks)

Solution: We require the discriminant for both quadratic functions to be greater than zero.

$$\Delta_1 = 16k^2 - 12 > 0 \implies k < -\frac{\sqrt{3}}{2} \text{ or } k > \frac{\sqrt{3}}{2}$$

$$\Delta_2 = 4 - 4k > 0 \implies k < 1$$

Therefore g(x) has four real roots for $k < -\frac{\sqrt{3}}{2}$ or $\frac{\sqrt{3}}{2} < k < 1$

b. Two real roots. (2 marks)

Solution: First quadratic no roots for $-\frac{\sqrt{3}}{2} < k < \frac{\sqrt{3}}{2}$ and second quadratic two roots for k < 1. This gives two roots for $-\frac{\sqrt{3}}{2} < k < \frac{\sqrt{3}}{2}$

Second quadratic no roots for k > 1 and first quadratic will give two roots for $k > \frac{\sqrt{3}}{2}$. However, note that when k = 1,

$$g(x) = (x^2 - 4x + 3)(x^2 - 2x + 1) = (x - 1)(x - 3)(x - 1)^2 = (x - 1)^3(x - 3)$$

so two roots when k = 1.

Conclude that there are two real roots when $-\frac{\sqrt{3}}{2} < k < \frac{\sqrt{3}}{2}$ or $k \ge 1$

Section G: Extension Exam 2 (13 Marks)

Question 16 (1 mark)

Let $f(x) = x^3 + 3x^2 - 4x + 8$. The remainder when f(x) is divided by 5x - 4 is:

- **A.** 104
- **B.** 188
- C. $\frac{904}{125}$
- **D.** $\frac{617}{64}$

Question 17 (1 mark)

Consider the quartic $y = (x - 2)^2(x^2 + 4kx + 6)$. It is known that the quartic has three distinct x-intercepts. The possible values of k are:

A.
$$k < -\sqrt{\frac{3}{2}} \text{ or } k > \sqrt{\frac{3}{2}}$$

B.
$$-\sqrt{\frac{3}{2}} < k < \sqrt{\frac{3}{2}}$$

C.
$$k = \pm \sqrt{\frac{3}{2}}$$

D.
$$k < -\sqrt{3} \text{ or } k > \sqrt{3}$$

Question 18 (1 mark)

A graph with rule $f(x) = x^3 - 3x^2 + c$, where c is a real number, has one distinct x-intercept. All possible values of c are:

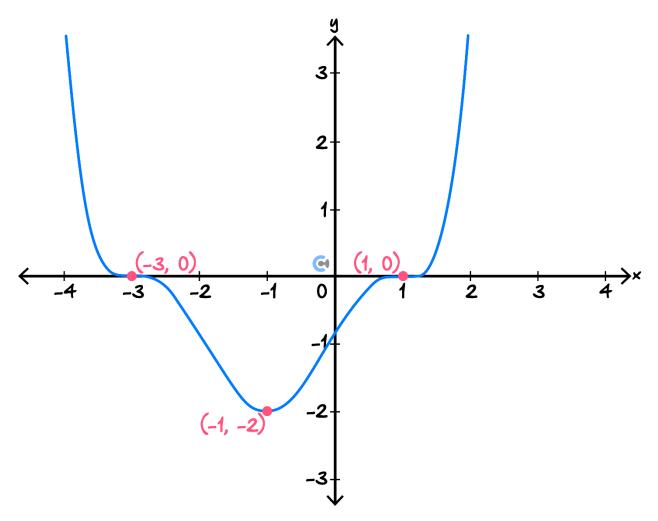
- **A.** c > 4
- **B.** 0 < c < 4

C.
$$c < 0 \text{ or } c > 4$$

D.
$$c > 4$$

Question 19 (10 marks)

Consider the function of the form $f(x) = a(x-b)^3(x-c)^3$, where b > c, depicted on the graph below.



a. Find the values of a, b, and c. (2 marks)

Solution: From the inflection points we see that b = 1 and c = -3. Then using the point (-1, -2) we find that $a = \frac{1}{32}$.

$$f(x) = \frac{1}{32}(x+3)^3(x-1)^3$$

b. Show that x = -1 is an axis of symmetry for the graph of f. (2 marks)

Solution:

$$f(-1+m) = \frac{1}{32}(m+2)^3(m-2)^3$$
$$= \frac{1}{32}(-m-2)^3(2-m)^3$$
$$= f(-1-m)$$

since this holds for any $m \in \mathbb{R}$, x = -1 is an axis of symmetry for f.

c. Find the value of d > 0 such that f(x) + d = 0 has one real solution. (1 mark)

Solution: d = 2

CONTOUREDUCATION

- **d.** Consider the function $g(x) = (x + k + 3)^3 (x + k 1)^3$, where $k \in \mathbb{R}$.
 - i. Find the roots of g in terms of k. (1 mark)

Solution: x = -k - 3, 1 - k

ii. Hence, find the values of k so that g(x) has only positive roots. (2 marks)

Solution: We require both -k-3>0 and 1-k>0. This yields k<-3.

iii. A function h is said to be even if h(x) = h(-x) for all x. Find the value of k such that g(x) is an even function. (2 marks)

Solution: k = -1

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
 Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

G

Booking Link

bit.ly/contour-methods-consult-2025

