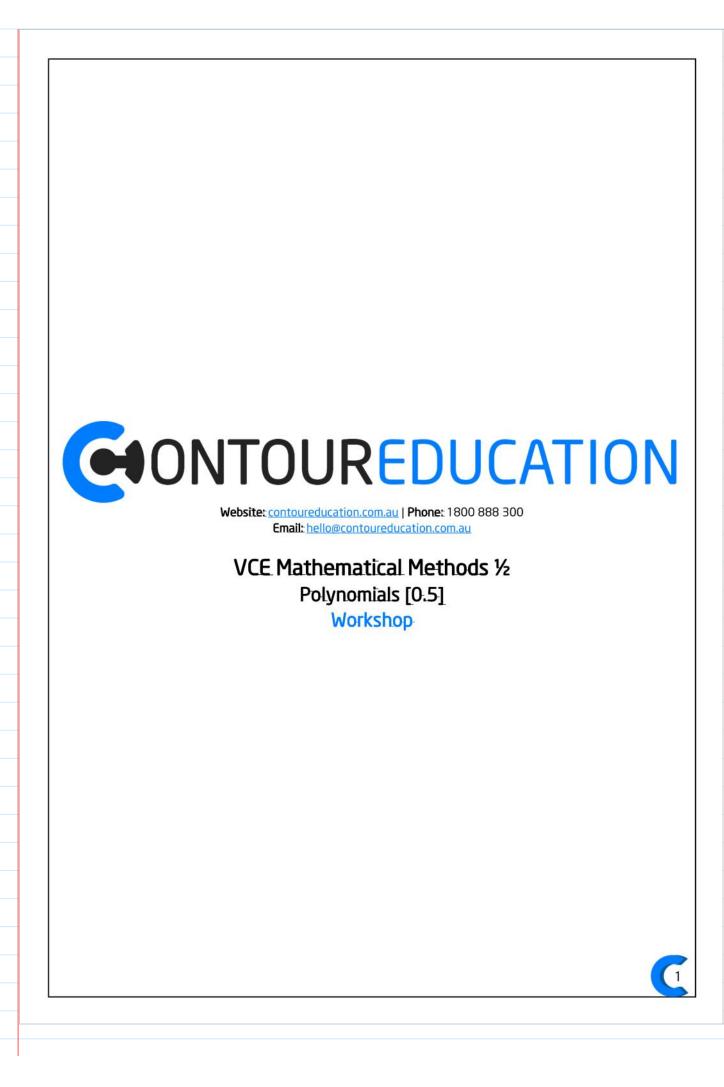
0.5 WS Saturday, 18 January 2025 5:26 PM



Section A: Recap-

Degree of Polynomial Functions

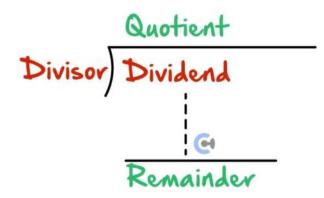
Degree = Highest Power of the Polynomial

Roots of Polynomial Functions

Roots = x - intercept

Polynomial Long Division

Division of polynomials



$$\frac{Dividend}{Divisor} = Quotient + \frac{Remainder}{Divisor}$$

Space for Personal Notes

Remainder Theorem

- Definition:
 - Finds the remainder of long division without the need of long division,

when P(x) is divided by $(x - \alpha)$, the remainder is $P(\alpha)$.

- Steps
 - 1. Find x-values which make the divisor equal to 0.
 - 2. Substitute it into the dividend function.

Factor Theorem

For every *x*-intercept, there is a factor:

If $P(\alpha) = 0$ then, $(x - \alpha)$ is a factor of P(x).

Factorising Polynomials

- The steps are:
 - Find a single root by trial and error.
 - (Factor Theorem: Substitute into the function and see if we get zero.)
 - Use long division to find the quadratic factor.
 - Factorise the quadratic.

Space for Personal Notes

Rational Root Theorem

Rational Root Theorem narrows down the possible roots.

$$Potential\ root = \pm \frac{Factors\ of\ constant\ term\ a_0}{Factors\ of\ leading\ coefficient\ a_n}$$

▶ If the roots are rational numbers, the roots can only be $\pm \frac{Factors\ of\ constant\ term\ a_0}{Factors\ of\ leading\ coefficient\ a_n}$

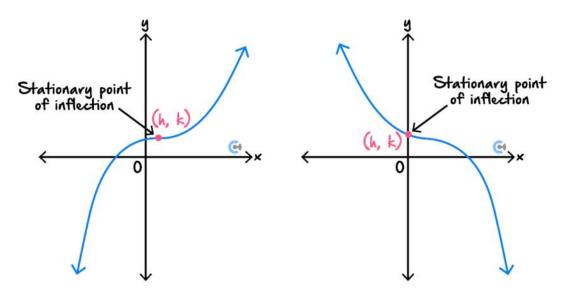
Sum and Difference of Cubes

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

 $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

Graphs of $a(x-h)^n + k$, where n is an Odd Positive Integer

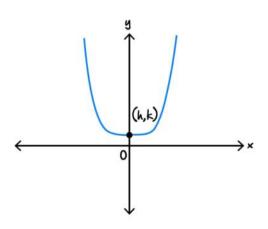
All graphs look like a "cubic".

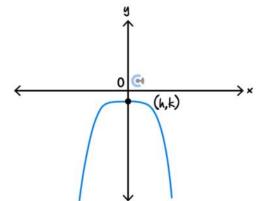


- \blacktriangleright The point (h, k) gives us the stationary point of inflection.
- n cannot be 1 for this shape to occur!

Graphs of $a(x-h)^n + k$, Where n is an Even Positive Integer

All graphs look like a "quadratic".

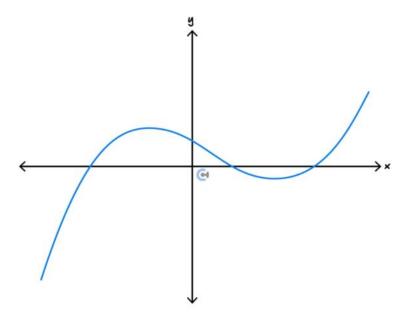




The point (h, k) gives us the turning point.

Graphs of Factorised Polynomials

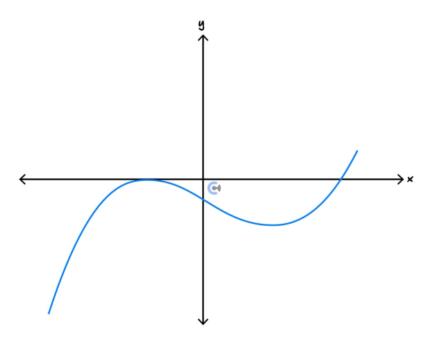
All non-repeated linear factors correspond to x-intercepts of the graph.



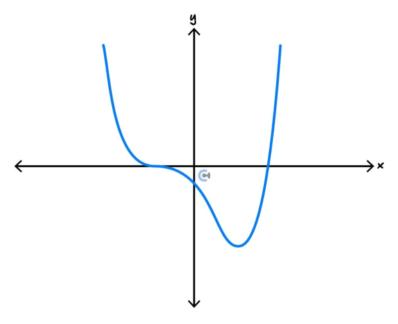
E.g., f(x) = (x-a)(x-b)(x-c) results in x-intercepts at (a,0), (b,0) and (c,0).

CONTOUREDUCATION

All squared linear factors correspond to x-intercepts and T.P. of the graph.



- E.g., $f(x) = (x a)^2(x b)$ will have an x-intercept (a, 0) which is also a local minimum/maximum.
- ➤ All cubed linear factors correspond to *x*-intercepts and SPI of the graph.



E.g., $f(x) = (x - a)^3 (x - b)$ has an x-intercept (a, 0) which is also a stationary point of inflection.

Steps to Graphing Factorised Polynomials

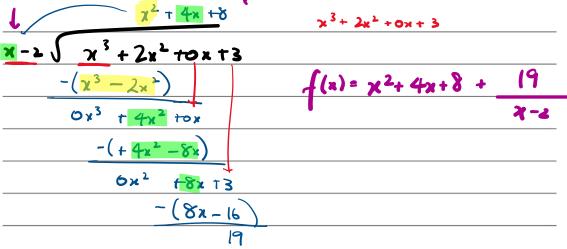
- Steps:
 - **1.** Plot *x*-intercepts.
 - **2.** Determine whether the polynomial is positive or negative.
 - **3.** Use the repeated factors to deduce the shape.
 - Non Repeated: Only x-intercept.
 - Even Repeated: x-intercept and a turning point.
 - \blacktriangleright Odd Repeated: x-intercept and a stationary point of inflection.

	Space	for	Persor	nal I	Votes
--	-------	-----	--------	-------	-------

Section B: Warmup

Question 1

a. Use polynomial long division to write $f(x) = \frac{x^3 + 2x^2 + 3}{x - 2}$ in the form $f(x) = Q(x) + \frac{a}{x - 2}$, for quadratic function Q and integer a.



b. Find the remainder of the division $\frac{f(x)}{g(x)}$ where $f(x) = x^3 + 3x^2 + 2$ and g(x) = x + 1.

2tleb
$$f(-1) = (-1)^3 + 3(-1)^2 + 2$$

$$= -1 + 3 + 2$$

$$= -4$$
Venainde

CHONTOUREDUCATION

c. Find all the roots of
$$f(x) = x^3 + 2x^2 - x - 2$$
.

$$\therefore (x-1) \text{ is a linear funtor } x+\sqrt{x^3+2x^2-x-2}$$

$$-(x^2-x^2)$$

$$f(x) = (x-1) \left(x^2 + 3x + 2 \right) \qquad \frac{3x^2 - x}{-(3x^2 - 3x)}$$

$$f(x) = (x-1) \left(x + 2 \right) (x+1) \qquad \frac{2x-2}{2x-2}$$

$$f(x) = (x-1)(x+2)(x+1)$$

$$f(x) = 0$$

d. Factorise the expression
$$8x^3 - 27$$
.
$$0^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

$$\frac{(2x)^3 - (3)^3}{= (2x - 3)((2x)^2 + (2x)(3) + 3^2)}$$

$$= (2x - 3)(4x^2 + 6x + 9)$$

Space for Personal Notes

Section C: Exam 1 (18 Marks)

Question 2 (5 marks)

We know that $f(x) = \frac{12}{2x+3}$ for all positive values of x.

a. Simplify $\frac{x^2+4x-5}{12} \times f(x)$. Give your answer in the form of $\frac{ax+5}{b}$ where a and b are positive integers and c is a rational number. (3 marks)

x2+ 4x-5 x 12	•	$\frac{1}{2}\pi < 2\mu = -\left(\frac{1}{2}\right)^{2}$
12 2x+3	1 2 x + 5	4n- 2n -8n -3n
$=$ $x^2 + 4x - 5$	(2x+3) x2+4x-5	2 2 = 5# 2
22+3	$-\left(\chi^{\perp}+\frac{3}{2}\varkappa\right)$	2
$= \frac{1}{2} x + \frac{3}{4} + \frac{3}{2z+3}$	$0^{n_1} + \frac{1}{2}^n - 2$	$2x \int_{X \times 1}^{2} = \frac{5}{2}x \times 1$
$= 2x + 5 \qquad \frac{35}{4}$	$-\left(\frac{2}{2}x + \frac{4}{12}\right)$	4x (3) = 5x
4 2x+3	0x - 35/4	4 * ③= 5
		(3) = 5
		-5- 15/4
	=	- 20 - 15/4

Consider $g(x) = \frac{5-81x^2}{4}$ for all values of x.

b. Solve g(x) = -13. (2 marks)

$$\frac{5-8|x^{2}|}{4} = -52$$

$$5-8|x^{2}| = -52$$

$$57-8|x^{2}| = 0$$

$$57 = 8|x^{2}|$$

$$57 = 8|x^{2}|$$

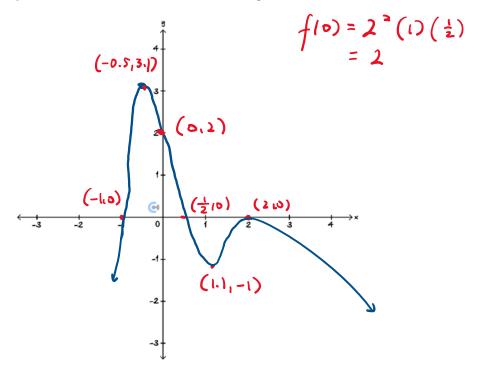
CONTOUREDUCATION

Question 3 (3 marks)

Consider the function:

$$f(x) = (2 - x)^{\frac{2}{2}}$$

It is known that f has turning points at approximately (-0.5,3.1) and (1.1,-1)Sketch the graph of y = f(x) on the axes below. Label all axes intercepts with coordinates.



Space for Personal Notes

Question 4 (4 marks)

$$q(x-h)^3+k \rightarrow (h,k)$$

Consider the functions $f(x) = (x-2)^3$ and g(x) = -x.

a. Sketch the graphs of y = f(x) and y = g(x) on the axes below. Label all axes intercepts. (3 marks)

$$\begin{cases} (0) = (2)^3 = -8 \\ 8 \\ 7 \\ 6 \\ 6 \\ 7 \\ 4 \\ 3 \\ 2 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ \times \\ (2i0) \\ (1) = 1 \\ (1)$$

b. Hence, solve the equation $(x-2)^3 = -x$ for x. (1 mark)

$$f(x) = g(x) \qquad f(1) = (1-2)^3 = -1$$

$$f(1) = (1-2)^3 = -1$$

$$f(1) = -1$$

$$f(1) = x = 1 \text{ is } (a, sola.)$$

Space for Personal Notes

ONTOUREDUCATION

Question 5 (6 marks)

a. Consider the function $f(x) = 3x^3 + \alpha x^2 + bx - 12$. If x - 2 is a factor of f(x) and the remainder of $f(x) \div$ x-1 = -18, find the value(s) of a and b. (3 marks)

$$\chi-2=0$$
 $f(z)=0$ $\chi=(=0)$ $\chi=(=0)$

$$2 = 2 \qquad f(1) = -18 \qquad x = 1$$

$$3(2)^{3} + 4(2)^{2} + b(2) - 12 = 0 \qquad f(1) = -18$$

$$3(8) + 46 + 26 - 12 = 0 \qquad 3 + 6 + 6 - 12 = 0.18$$

$$3(8) + 4a + 2b - 12 = 0$$

$$24 + 4a + 2b - 12 = 0$$

$$-9 + a + b = -18$$

$$0: 6 + 2a + (-9-a) = 0 \qquad b = -9 - (3)$$

$$6 - 9 + 4 = 0$$
 $6 - 9 + 4 = 0$
 $6 - 9 + 4 = 0$
 $6 - 9 + 4 = 0$
 $6 - 9 + 4 = 0$
 $6 - 9 + 4 = 0$
 $6 - 9 + 4 = 0$
 $6 - 9 + 4 = 0$
 $6 - 9 + 4 = 0$
 $6 - 9 + 4 = 0$
 $6 - 9 + 4 = 0$
 $6 - 9 + 4 = 0$
 $6 - 9 + 4 = 0$
 $6 - 12$

b. Hence, simplify the following using polynomial long division: $\frac{3x^3+3x^2-12x-12}{x^2+4x+1}$. (3 marks)

		3x -9		
22+4x +	$3x^3 +$	3×2 -12x-12	3x-9+	21x -3
	$-(3x^3+1)$	2x2 +3x)		X2+9x+1
	$Ox^3 - c$	12 - 12× -12		
	-(-9	$x^2 - 36x - 9$		
	Ox	2 t21x - 3		

Section D: Tech Active Exam Skills

Calculator Commands: Turning Point

- ➤ ALWAYS sketch the graph to find approximate bounds for where the turning point you want is located.
- To find a local maximum we maximise the function over a specific domain.
- To find a local minimum we minimise the function over a specific domain.
- TI and Casio: Use fmin(expression, variable, lower (optional), upper (optional)) or fmax(expression, variable, lower (optional), upper (optional)).
- TI: Menu $\rightarrow 4 \rightarrow \frac{7}{8}$.

Define
$$f(x)=x^3-4\cdot x$$

$$f(x)$$

Casio: Action→Calculation→ fmin/fmax

$$fmin(x^3-4x, x, 0, 2)$$

$$\left\{ \text{MinValue} = \frac{-16 \cdot \sqrt{3}}{9}, x = \frac{2 \cdot \sqrt{3}}{3} \right\}$$

NOTE: TI only gives the *x*-value for the min/max so we then need to sub it back into our function. Casio gives us both!

VCE Mathematical Meth

G

Calculator Commands

- Mathematica: Minimize[] and Maximize[] commands.
- Minimize[f[x], x] will minimize f[x] over its whole domain.
- To restrict the domain, we must use Minimize[$\{f[x], a \le x \le b\}, x$].

$$In[34]:=$$
 Minimize[{x^3-4x, 0

Out[34]=
$$\left\{-\frac{16}{3\sqrt{3}}, \left\{x \rightarrow \frac{2}{\sqrt{3}}\right\}\right\}$$

Space for Personal Notes

Section E: Exam 2 (26 Marks)

Question 6 (1 mark)

The stationary point of inflection of the cubic, $y = (x - 2)^3 + 4$ occurs at:

A. (-2,4)

B. (2, 4)

C. (-2, -4)

D. (4, 2)

Question 7 (1 mark)

The data (3,3), (4,0), (5,3), (6,48) and (7,243) can be modelled by the equation $y=a(x-b)^4$. The values of a and b respectively are:

(A) 3 and 4. f(3) = 3B. -3 and 4. f(4) = 3 f(6) = 48 f(7) = 243

C. 4 and 3.

D. -3 and -4.

Question 8 (1 mark)

The values of x that satisfy $x^3 - 6x^2 - 27x + 140 = 0$ are:

A. x = -5,4,5

B. x = -5, -4, 6

C. x = -5,4,7

D. x = 2,3,7

Space for Personal Notes

Question 9 (1 mark)

Using the Rational Root Theorem, count the number of possible roots that $y = 3x^3 + 7x^2 - 5x + 11$ has.

A. 4

B. 6

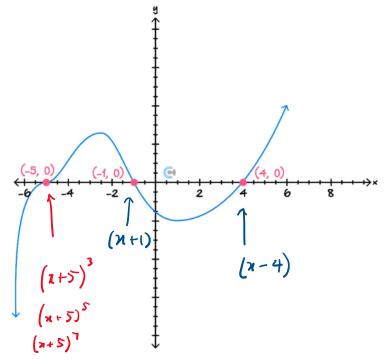
C. 7

(D.) 8

$$\pm \frac{\{\{1,11\}\}}{\{\{1,3\}\}} = \pm \{\{1,\frac{1}{3},11,\frac{11}{3}\}\}$$

Question 10 (1 mark)

The equation that best represents the graph below is:



A.
$$y = (x-4)^3(x+5)(x-1)$$

B.
$$y = (x+5)^3(x+1)(x-4)$$

C.
$$y = (x+1)^3(x+5)^2(x-4)$$

D.
$$y = (x+4)(x+5)(x-1)$$

Question 11 (1 mark)

Find the remainder of the division, $f(x) \div g(x)$, where $f(x) = 7x^3 - 4x^2 + 5x - 11$ and g(x) = 3x - 2.

- **A.** 0
- **B.** 13
- C. $\frac{233}{17}$
- D. $\frac{-199}{-7}$
- $R = \sqrt{\frac{2}{3}}$
- 1
- f(x)
 q(x)

Space for Personal Notes

ONTOUREDUCATION

VCE Mathematical Methods 1/2

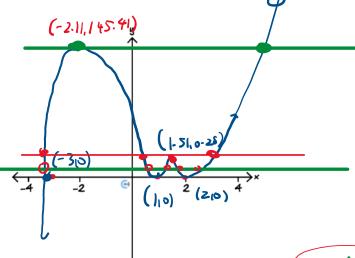
Question 12 (10 marks)

Consider the quintic polynomial $f(x) = (x+3)(x-1)^2(x-2)^2$. The function has turning points at (-2.11, 145.41), (a, 0), (1.51, 0.28), (b, 0),where a > b.

a. State the values of a and b. (1 mark)

(ho) (210)

b. Sketch the graph on the axes below labelling all x-intercepts and turning points. Ignore the y-axis scale. (3 marks)



K>145.41

c. Find all solutions to f(x) = 0.28 for x correct to 2 decimal places. (2 marks)

$$f(x) = 0.28$$

$$x = 3.00, 0.78, 1.49, 1.54, 2.19.$$

- **d.** Find the values of k (to 2 decimal places) when:
 - i. f(x) = k has 1 solution. (1 mark)

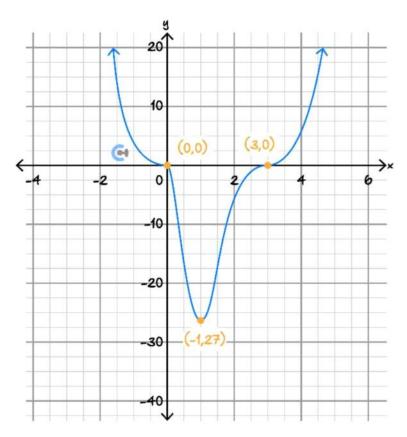
ii. f(x) = k has 5 solutions. (2 marks)

iii. $f(x) \neq k$ has 2 solutions. (1 mark)

Space for Personal Notes

Question 13 (9 marks)

Consider the function of the form $f(x) = a(x-b)^3(x-c)^3$ where b > c, shown on the axes below.



a. Find the values of a, b and c. (3 marks)

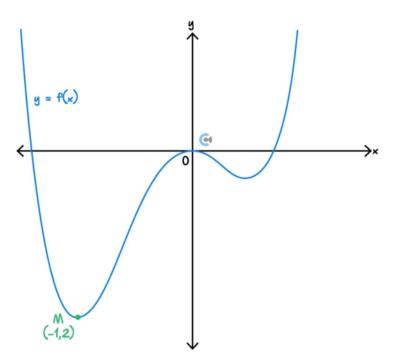
·		

b.	Hence, simplify $\frac{f(x)}{(x-3)^3}$, leaving your answer in the form of $\frac{px^q}{m}$, where p , q and m are positive integers. Show all working. (2 marks)
c.	It is known that the division, $f(x) \div (x - k)$, leaves a remainder of 0. Find the possible values of k .
	(2 marks)

CONTOUREDUCATION

VCE Mathematical Methods 1/2

Consider the quartic $f: R \to R$, $f(x) = 5x^4 + 6x^3 - x^2$. Part of the graph of f(x) is shown below.



d. State the values of $b \in R$ for which the graph of y = f(x) + b has no x-intercepts. (1 mark)

Let $p: R \to R$, $p(x) = 5x^4 + 3(a+2)x^3 - x^2 - 2ax + 3a^2$, $a \in R$.

e. State the value of a for which p(x) = f(x) has infinite solutions. (1 mark)

Space for Personal Notes

Section F: Extension Exam 1 (14 Marks)

Question	14	(8	marks))
----------	----	----	--------	---

Consider the function $f(x) = x^5 + x^4 - 5x^3 - 5x^2 + 4x + 4$.

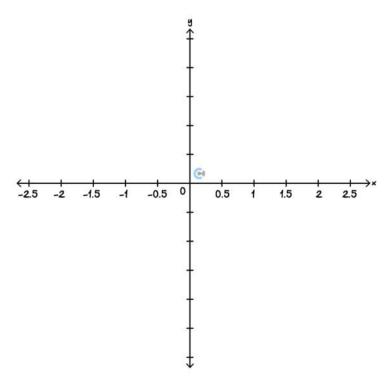
a. Show that $(x^2 - 4)$ is a factor of f. (2 marks)

b. Find all roots of f. (3 marks)

MM12 [0.5] - Polynomials - Workshop

24

c. It is known that f has two turning points when x > 0. Sketch the graph of y = f(x) on the axes below. Label all axes intercepts and ignore the y-scale. (3 marks)



Space for Personal Notes

Ouestion	15	(6	marks)	

A cubic function $f(x) = ax^3 + bx^2 + cx + d$ passes through the points (-2, -22), (0,4) (1,2) and (2,6).

a. Show that a = 2, b = -3, c = -1 and d = 4. (3 marks)

MM12 [0.5] - Polynomials - Workshop

26

b.	Write the function $g(x) = \frac{(x+1)f(x)}{x-1}$ in the form $g(x) = C(x) + \frac{A}{x-1}$, for a cubic function and an integer A. (3 marks)

Space for Personal Notes

Section G: Extension Exam 2 (15 Marks)

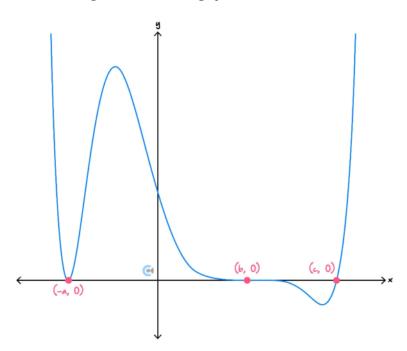
Question 16 (1 mark)

How many **rational** roots does the polynomial $4x^3 - x^2 - 12x + 3$ have?

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3

Question 17 (1 mark)

If a, b, c > 0, which of the following could describe the graph below?



A.
$$y = (x - a)^2(x - b)^3(x - c)$$

B.
$$y = (x+a)^2(x-b)^5(x-c)$$

C.
$$y = (x - a)^2(x - b)^3(x - c)^2$$

D.
$$y = (x+a)^2(x-b)(x-c)^3$$

Question 18 (1 mark)

A set of three numbers that could be solutions to the equation $x^3 + ax^2 - 17x + 60 = 0$ is:

- **A.** {1,4,7}
- **B.** {−4,3,5}
- **C.** $\{-5,2,3\}$
- **D.** $\{-4, -5, 3\}$

Question 19 (1 mark)

If x + a is a factor of $x^3 + (1 - a)x^2 - 8x + 21$, where a > 0, then the value of a is:

- **A.** 1
- **B.** 2
- **C.** 3
- **D.** 4

Question 20 (1 mark)

The graph of $y = x^4 - 4kx^2 + 4$, where k is a real number, has four x-intercepts when:

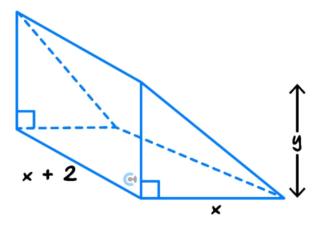
- **A.** k < 1
- **B.** k > 1
- C. $-1 \le k \le 1$
- **D.** $k \le 1$

Space for Personal Notes

Question 21 (5 marks)

The triangular box below consists of sides $x \ cm$ and $x + 2 \ cm$, in length and width, and a height of $y \ cm$.

It is known that the width, length and height of the box added together equals 30 cm.



a. Find an expression for V, the volume of the box, in terms of x. (2 marks)

b. State the possible values that x can take. (2 marks)

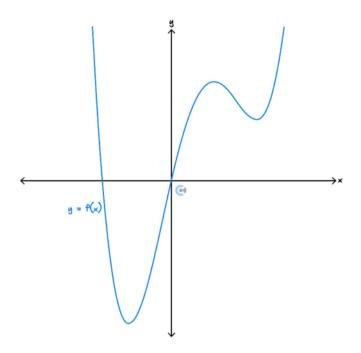
MM12 [0.5] - Polynomials - Workshop

30

c. Find the maximum value of the box correct to the nearest cubic centimetre. (1 mark)

Question 22 (5 marks)

Consider the function $f(x) = 3x^4 - 8x^3 - 6x^2 + 24x$. Part of the graph of y = f(x) shown below.



a. Find the distance between the x-intercepts. Give your answer correct to two decimal places. (1 mark)

b.	It is known that f has turning points at x -values that are roots to the function $g(x) = 12x^3 - 24x^2 - 12x + 24$.
	Find the coordinates of all turning points of f . (2 marks)
c.	Hence, find the values of k such that $f(x) = k$ has two real solutions. (2 marks)

Space for Personal Notes

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-methods-consult-2025

