

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ½
Quadratics Exam Skills [0.4]
Workshop

Section A: Recap

Sub-Section: Factorising Quadratics

Factorising Quadratics

$$y = (x - a)(x - b)$$

- > Steps:
 - 1. Divide by the coefficient of the leading term. (If applicable)
 - 2. Consider the factors of the constant term.
 - 3. (If Positive Constant Term): See which pair of factors can add up to the coefficient of the x term.
 (If Negative Constant Term): See which pair of factors can subtract from the coefficient of the x term.
 - **4.** Construct the linear factors.

Sub-Section: Perfect Squares

Perfect Squares

$$(a+b)^2 = \underline{\hspace{1cm}}$$

$$(a-b)^2 = \underline{\hspace{1cm}}$$

- Perfect squares are special quadratic expressions that are made up of two **identical** linear factors.
- In other words, when a linear factor is squared, it becomes a perfect square.

Sub-Section: Difference of Squares

Difference of Squares

$$a^2 - b^2 = \underline{\hspace{1cm}}$$

Sub-Section: Completing the Square

Completing the Square

When we complete the square of a quadratic $x^2 + bx + c$, we write it in the form:

$$x^2 + bx + c = (\underline{})^2 - (\frac{b}{2})^2 + c$$

- > Steps:
 - **1.** We halve the coefficient of x.
 - **2.** Subtract the half of the coefficient of *x* squared outside the square bracket.

Sub-Section: Solving by Factorisation

Solving by Factorisation

$$(x-a)(x-b)=0$$

$$x = a$$
 or b

- Steps:
 - **1.** Factorise the quadratic.
 - **2.** Equate each factor to 0 and solve for x.

Sub-Section: Quadratic Formula

The Quadratic Formula

for
$$ax^2 + bx + c = 0$$

$$x =$$

Sub-Section: Discriminant

The Discriminant

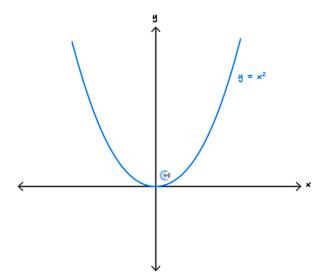
- Definition:
 - \bullet The discriminant, often denoted by Δ (Delta), is the part **inside** the square root of the quadratic formula.

$$Discriminant = \Delta = b^2 - 4ac$$

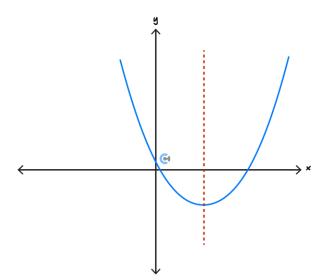
if $\Delta > 0$, there are _____

if $\Delta = 0$, there is ______.

if $\Delta < 0$, there are ______.


Sub-Section: Parabola and Symmetry

<u>Parabola</u>



- Definition:
 - The shape of the graph of a quadratic is known as a ______

Axis of Symmetry

Axis of symmetry:
$$x = -\frac{b}{2a}$$

Sub-Section: Graphing Quadratics

Turning Point Form

The turning point form of a quadratic is given by:

$$y = a(x - h)^2 + k$$

Turning point = _____

The turning point form is obtained by **completing the square**.

Intercept Form

The x-intercept form of a quadratic is given by:

$$y = a(x - b)(x - c)$$

x-intercepts: (b, 0) and (c, 0)

The axis of symmetry is located exactly in the middle of the two x-intercepts.

NOTE: When α is negative, the x-intercepts stay the same, but the **shape** of the parabola becomes a **negative** parabola instead.

Sub-Section: Finding a Rule of a Quadratic from a Graph

Finding the Equation of a Quadratic

Form 1: Turning Point Form

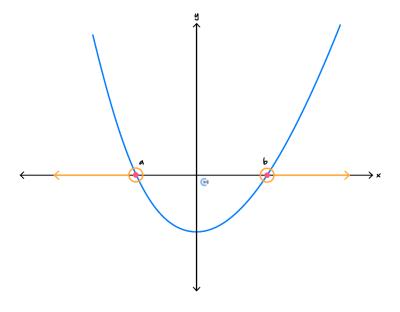
$$y = a(x - h)^2 + k$$

- @ Recommended when a turning point is easy to identify.
- Form 2: x-intercept Form

$$y = a(x - b)(x - c)$$

 \bullet Recommended when both x-intercepts are easy to identify.

NOTE: Never forget the *a* coefficient!



Sub-Section: Quadratic Inequalities

Quadratic Inequalities

- For quadratic inequalities, we always _____ the function.
- Steps:
 - 1. Sketch the function.
 - **2.** See where the *y*-value is within the inequality.
 - **3.** Find the corresponding x-values.

Sub-Section: Hidden Quadratics

Hidden Quadratics

Instead of:

$$af(x)^2 + bf(x) + c = 0$$

We can let f(x) = X to have:

$$aX^2 + bX + c = 0$$

Completing the square quickly.

$$y = a(x - h)^2 + k$$

- Steps
 - **1.** Find the turning point using $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$.
 - **2.** Use the leading coefficient as *a*.

Modelling with Quadratics

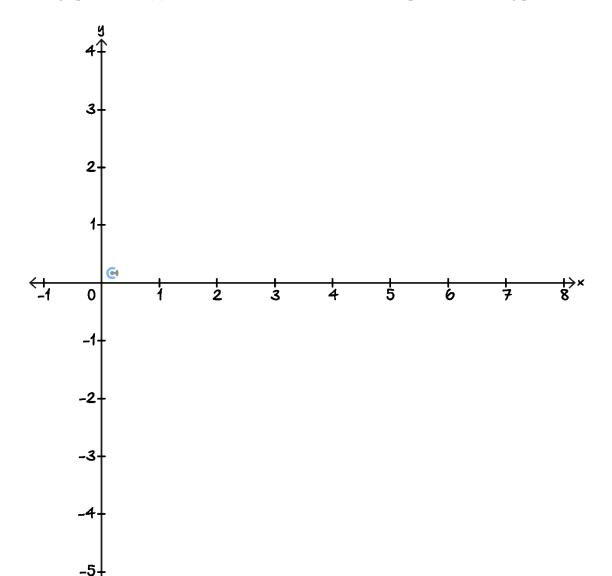
Focus on key points such as turning points, x-intercepts and y-intercepts.

Family of Functions

- Definition: Functions with unknowns.
- Question Type: Find the unknown value to satisfy a certain condition.

Section B: Warmup

Question 1


Let $f(x) = -\frac{x^2}{2} + 3x - \frac{5}{2}$.

a. Write f(x) in turning point form.

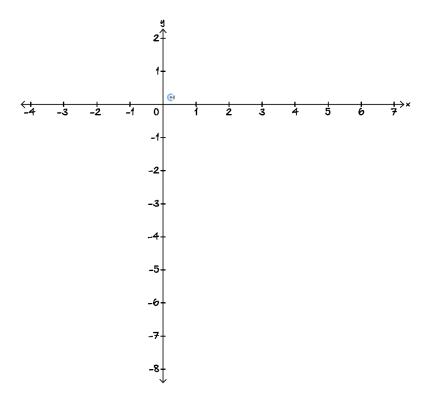
b. Solve the equation $f(x) =$	0.
---------------------------------------	----

c. Sketch the graph of y = f(x) on the axes below, Label all axes intercepts and the turning point.

d. Find the value of m such that the line y = mx - 2 intersects the graph of y = f(x) exactly once.

Section C: Exam 1 (22 Marks)

Question 2 (3 marks)
The sum of the ages of a man and his son is 30, and the product of their ages is 125.
a. Write down a quadratic equation in the form $ax^2 + bx + c = 0$ that can be solved to find the ages of the magnitude and his son, where x is the age of the son. (1 mark)
b. Find the ages of the man and his son. (2 marks)
Space for Personal Notes


Question 3 (6 marks)

Consider the function $f(x) = 2x^2 - 4x - 6$.

a. Solve the equation f(x) = 0. (1 mark)

b. Write f(x) in turning point form. (1 mark)

c. Sketch the graph of y = f(x) on the axes below. Label the turning point and all axes intercepts with coordinates. (2 marks)

VCE Methods ½ Questions? Message +61 440 138 726

d.	Find the value(s) of x such that $f(x) + 4 < 0$. (2 marks)
	
Qu	estion 4 (2 marks)
Sol	we the inequality $-x^2 + 3x + 18 \ge 0$.
301	we the inequality $-x + 3x + 10 \ge 0$.
22	ace for Personal Notes
ا ا	ace for Fersonial Notes

	narks)					
olve the equat	Solve the equation $2x^4 - 20x^2 + 18 = 0$, for real values of x .					
pace for Per	onal Notes					
pace for Per	onal Notes					
pace for Pers	onal Notes					
pace for Pers	onal Notes					
pace for Pers	onal Notes					
pace for Per	onal Notes					
pace for Per	onal Notes					
pace for Per	onal Notes					
pace for Per	onal Notes					
pace for Pers	onal Notes					
pace for Per	onal Notes					
pace for Per	ional Notes					
pace for Per	onal Notes					
pace for Per	onal Notes					

Qι	nestion 6 (4 marks)
Co	onsider the function $f(x) = x^2 - 3kx + 6$, where k is a real number.
a.	Find the turning point of $f(x)$ in terms of k . (2 marks)
b.	Find all possible values of k if $f(x)$ is always greater than 2. (2 marks)
Sc	pace for Personal Notes
•	

'o	nsider the function $f(x) = x^2 + 2kx - 4$, where k is a real number.
	Show that the graph $y = f(x)$ always has two x-intercepts. (1 mark)
	Find the values of k such that the distance between the two x -intercepts is less than 6. (3 marks)
	·
Σp	ace for Personal Notes

Section D: Tech Active Exam Skills

Calculator Commands: Solving equations

- Mathematica
 - Solve

 Solve

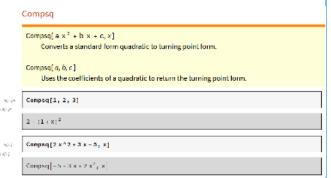
$$\begin{split} & \text{In}[122]\text{:= Solve}\big[\,x^{2} - 4\,x - 9 \,\text{ == 0, }\,x\big] \\ & \text{Out}[122]\text{= }\left\{\,\left\{\,x \to 2 \,-\,\sqrt{13}\,\right\}\,,\,\,\left\{\,x \to 2 \,+\,\sqrt{13}\,\right\}\,\right\} \end{split}$$

- ➤ TI-Nspire
 - $\bullet \quad \mathsf{Menu} \to 3 \to 1.$

solve
$$(x^2-4\cdot x-9=0,x)$$

 $x=-(\sqrt{13}-2) \text{ or } x=\sqrt{13}+2$

- Casio Classpad
 - ♠ Action→Advanced→Solve.


solve
$$(x^2-4x-9=0, x)$$

 $\{x=-\sqrt{13}+2, x=\sqrt{13}+2\}$

Calculator Commands: Completing the Square

- TI-Nspire
- Menu→ 3 → 5 completeSquare (func, var).

completeSquare $(x^2-6\cdot x+8,x)$ $(x-3)^2-1$

- Mathematica
 - No inbuilt function need udf.

- CasioClasspad
- No function

Section E: Exam 2 (27 Marks)

Question 8 (1 mark)

Find the value(s) of k for which the quadratic equation below has exactly one unique real solution.

$$2x^2 - 3kx + 3k = 0$$

- **A.** $k = \frac{8}{3}$
- **B.** $k = 0, \frac{8}{3}$
- C. $k > \frac{8}{3}$
- **D.** k = 0.3

Question 9 (1 mark)

A quadratic function has a turning point at (4, 3) and goes through the point (6, 7). What is the equation of the function?

- **A.** $2(x-4)^2+3$
- **B.** $-(x-4)^2+3$
- C. $(x-3)^2+4$
- **D.** $(x-4)^2+3$

Question 10 (1 mark)

The function $f(x) = x^2 + mx + 2$ is always greater than -1. The possible values of m are:

- **A.** $-\sqrt{3} < m < \sqrt{3}$
- **B.** $-2\sqrt{2} < m < 2\sqrt{2}$
- C. $-2\sqrt{3} < m < 2\sqrt{3}$
- **D.** -1 < m < 1

Question 11 (1 mark)

If one root of the quadratic equation $2x^2 + px - 35 = 0$ is -7 the value of p is:

- **A.** −9
- **B.** 9
- C. -4
- **D.** 4

Question 12 (1 mark)

The equation $ax^2 + 6x + c = 0$ has only one real solution if:

- **A.** ac > -9
- **B.** 2ac = 9
- **C.** ac = -9
- **D.** ac = 9

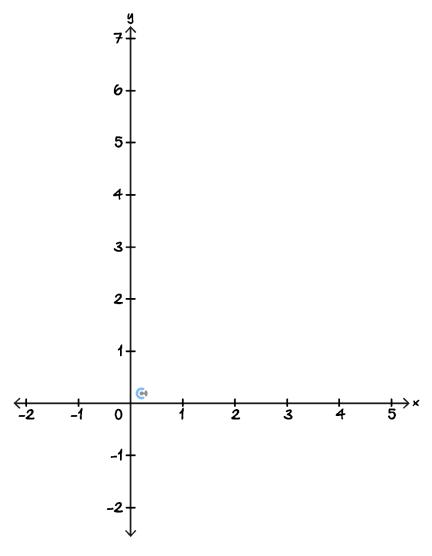
Question	13	(14	marks))

Consider the quadratic function $f(x) = x^2 - 4x + 2$.

a.

i. Solve the equation f(x) = 0. (1 mark)

ii. State the distance between the x-axis intercepts. (1 mark)


iii. Find the turning point of the graph of y = f(x). (1 mark)

iv. Hence, write f(x) in turning point form. (1 mark)

v. Find the *y*-intercept of the graph of y = f(x). (1 mark)

b. Sketch the graph of y = f(x) on the axes below. (2 marks)

c. If the graph of y = f(x) is shifted k units to the left, find the values of k for which there is one, negative x-axis intercept. (2 marks)

d. The graph of y = f(x) is translated 1 unit to the left and 4 units up and now has the equation:

$$y = a(x - h)^2 + k$$
, $a, h, k \in \mathbb{R}$

Determine the values of a, h, k. (2 marks)

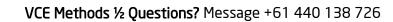
- e. Consider the graph of the function $g(x) = 4x^2 + kx + 2(k+1)$. Find the value(s) of k for which g(x) will have:
 - i. No real root. (1 mark)

ii. One real root. (1 mark)

iii. Two unique real roots. (1 mark)

Question 14 (9 marks)

A cricket player hits a ball, and the ball's trajectory is modelled by the quadratic equation:


$$h(x) = ax^2 + bx + c,$$

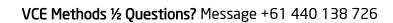
where h(x) is the height of the ball (in metres) above the ground, and x is the horizontal distance (in metres) from where the ball was hit.

The following conditions are given:

- The ball is hit from a height of 2 metres, i.e., h(0) = 2.
- The ball reaches a height of 15 metres when it has travelled 8 metres horizontally.
- The ball reaches a height of 25 metres when it has travelled 16 metres horizontally.

 	 	·	

c.	Determine the horizontal distance the ball has travelled when its height is 20 metres. Provide both possible horizontal distances correct to two decimal places. (2 marks)	e
		-
		-
		-
d.	After reaching a certain height, the ball travels 8 metres horizontally to drop down to that height again. Fi this exact height. (3 marks)	nd
		-
		-
		-
		-
Sp	ace for Personal Notes	



Section F: Extension Exam 1 (16 Marks)

Question 15 (4 marks)
The parabola $y = ax^2 + bx + c$ passes through the points $\left(1, -\frac{1}{2}\right)$, $(4, -5)$, and $(6, -3)$.
Determine the values of real numbers a , b , and c .

Question 16 (4 marks) Let $f(x) = 2x^2 - 4x + 5$. **a.** Find the turning point of the parabola y = f(x). (1 mark) **b.** Reflect this turning point in the line x = 3 and then in the line y = 2. (1 mark) The parabola y = f(x) is reflected in the line x = 3 and then reflected in the line y = 2. Find the equation of the resulting parabola in the form $y = ax^2 + bx + c$, where a, b, and c are real numbers. (2 marks)

Question 18 (4 marks)			
Let $f(x) = x^4 - 4kx^2 + 4 - k^2$, where k is a real constant.			
Find the values of k for which the equation $f(x) = 0$ has no real solutions.			
Caraca for Danas and Notes			
Space for Personal Notes			

Section G: Extension Exam 2 (16 Marks)

Question 19 (1 mark)

If $px^2 + 5x + q = 0$ has two roots x = -2 and x = 1, the value of p - q is:

- **A.** −5
- **B.** 5
- **C.** 10
- **D.** 15

Question 20 (1 mark)

The equation of the parabola that passes through the points (1, 2), (3, 2) and (4, 5) is:

A.
$$y = x^2 - 4x - 5$$

B.
$$y = (x-2)^2 + 1$$

C.
$$y = x^2 + 4x + 5$$

D.
$$y = (x-1)^2 + 2$$

Question 21 (1 mark)

Consider the graph of $y = x^2 - 2kx - 2$ where k is a real constant.

The values of k for which the distance between the two x-intercepts is less than 6 are:

A.
$$-\sqrt{5} < k < \sqrt{5}$$

B.
$$-\sqrt{6} < k < \sqrt{6}$$

C.
$$-\sqrt{7} < k < \sqrt{7}$$

D.
$$-\sqrt{11} < k < \sqrt{11}$$

Question 22 (1 mark)

Let
$$y = 2x^2 - 4x - 2$$
.

If -2 < x < 3, the possible values of y are:

- **A.** $-4 < y \le 14$
- **B.** $-4 \le y < 14$
- **C.** 4 < y < 14
- **D.** -4 < y < 14

Question 23 (1 mark)

Find all values of k, such that $x^2 + kx + k^2 - 4$ has two real roots for x, where one is positive and one is negative.

- **A.** k < 2
- **B.** k > -2
- C. -2 < k < 2
- **D.** $-2 \le k \le 2$

Question 24 (11 marks)

Consider the function $f(x) = x^2 + (k-2)x + \frac{k^2 - 4k - 4}{2}$, where k is a real constant.

a.

i. Find all values of k such that f(x) = 0 has one real root.. (1 mark)

ii. Find all values of k such that f(x) = 0 has two real roots. (1 mark)

iii. Find all values of k such that f(x) = 0 has two real roots, where one is positive and the other is negative. (2 marks)

b. Find all values of k for which the graph of y = f(x) and the graph y = kx + 2 do not intersect. (2 marks)

VCE Methods ½ Questions? Message +61 440 138 726

c.	c. Find all values of k such that $f(x) > 2$ for all real x . (2 marks)			
d.	Find all values of k such that the graph of $y = f(x)$ has two x -intercepts that have a distance between them that is less than 2. (3 marks)			
Space for Personal Notes				

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

