

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Circular Function I [0.16]

Workshop

Error Logbook:

New Ideas/Concepts	Didn't Read Question
Pg / Q #:	Pg / Q #:
Algebraic/Arithmetic/ Calculator Input Mistake	Working Out Not Detailed Enough
Pg / Q #:	Pg / Q #:

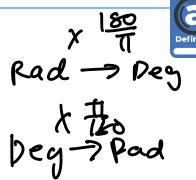
Section A: Recap

Radians and Degrees

$$\mathbf{1}^c = \left(\frac{180}{\pi}\right)^{\mathbf{0}}$$

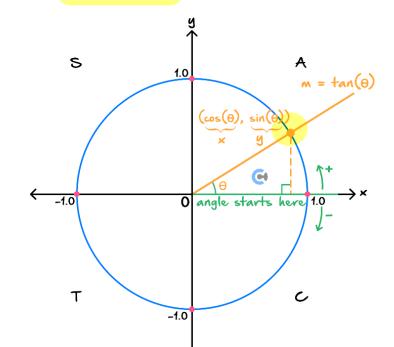
$$1^{0} = \left(\frac{\pi}{180}\right)^{c}$$

$$180^{\circ} = \pi^{c}$$



Unit Circle

The unit circle is simply a circle of radius 1.



$$\sin(\theta) = y$$

$$\cos(\theta) = x$$

$$tan(\theta) = gradient$$

Period of a Trigonometric Function

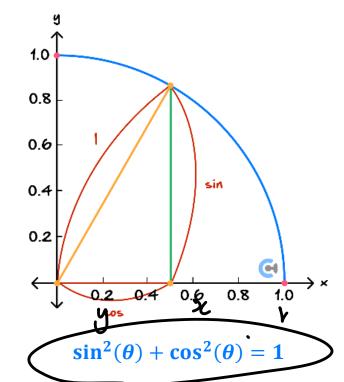
period of
$$sin(nx)$$
 and $cos(nx)$ functions = $\frac{2\pi}{n}$

how often It repe

period of
$$tan(nx)$$
 functions $=\frac{\pi}{n}$

where n = coefficient of x and n > 0

Pythagorean Identities



Can be used for finding one trigonometry function by sing the other.

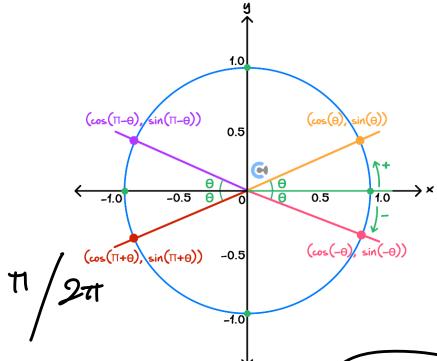
CONTOUREDUCATION

The Exact Values Table

x _	0 (0°)	$\frac{\pi}{6}$ (30°)	$\frac{\pi}{4} (45^{0})$	$\frac{\pi}{3} \left(60^{\circ}\right)$	$\frac{\pi}{2} \ (90^{\rm o})$
sin(x)	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan(x)	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Undefined

2 SIV

Supplementary Relationships



Simply look at the quadrant to find the correct sign.

• Second Quadrant $(\pi - \theta)$

$$\cos(\pi - \theta) = -\cos(\theta)$$

$$\sin(\pi - \theta) = +\sin(\theta)$$

$$\tan(\pi - \theta) = -\tan(\theta)$$

G Third Quadrant $(\pi + \theta)$

$$\cos(\pi + \theta) = -\cos(\theta)$$

$$\sin(\pi + \theta) = -\sin(\theta)$$

$$\tan(\pi + \theta) = + \tan(\theta)$$

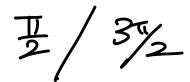
© Fourth Quadrant $(-\theta)$

$$\cos(-\theta) = +\cos(\theta)$$

$$\sin(-\theta) = -\sin(\theta)$$

$$\tan(-\theta) = -\tan(\theta)$$

Complementary Relationships



Q(P)S

- Consider the quadrant for signs.
 - Θ First Quadrant $\left(\frac{\pi}{2} \theta\right)$

$$\cos\left(\frac{\pi}{2} - \theta\right) = +\sin(\theta)$$

$$\sin\left(\frac{\pi}{2} - \theta\right) = +\cos(\theta)$$

$$\tan\left(\frac{\pi}{2} - \theta\right) = +\frac{1}{\tan(\theta)}$$

G Second Quadrant $\left(\frac{\pi}{2} + \theta\right)$

$$\sin\left(\frac{\pi}{2} + \theta\right) = +\cos(\theta)$$

$$\cos\left(\frac{\pi}{2} + \theta\right) = -\sin(\theta)$$

CONTOUREDUCATION

$$\tan\left(\frac{\pi}{2} + \theta\right) = -\frac{1}{\tan(\theta)}$$

 $\bullet \quad \text{Third Quadrant} \left(\frac{3\pi}{2} - \theta \right)$

$$\sin\left(\frac{3\pi}{2} - \theta\right) = -\cos(\theta)$$

$$\cos\left(\frac{3\pi}{2}-\theta\right)=-\sin(\theta)$$

$$\tan\left(\frac{3\pi}{2} - \theta\right) = \frac{1}{\tan(\theta)}$$

• Fourth Quadrant $\left(\frac{3\pi}{2} + \theta\right)$

$$\sin\left(\frac{3\pi}{2} + \theta\right) = -\cos(\theta)$$

$$\cos\left(\frac{3\pi}{2} + \theta\right) = +\sin(\theta)$$

$$\tan\left(\frac{3\pi}{2} + \theta\right) = -\frac{1}{\tan(\theta)}$$

- > Steps:
 - 1. Note complementary relationship by identifying a vertical angle $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$.
 - **2.** Equate to the opposite trigonometric function $\cos / \sin / \frac{1}{\tan(\theta)}$.
 - **3.** Determine the sign (\pm) by considering the quadrant.

Supplementary v/s Complementary

Ti /271

Supplementary: $trig(Horizontal\ Angle \pm heta)$

Complementary: $trig(Vertical\ Angle \pm \theta)$

1 or 3/2

Particular Solutions

- Solving trigonometric equations for finite solutions.
- Steps:
 - 1. Make the trigonometric function the subject.
 - 2. Find the necessary angle for one period.
 - **3.** Solve for *x* by equating the necessary angles to the inside of the trigonometric functions.
 - **4.** Add and subtract the period to find all other solutions in the domain.

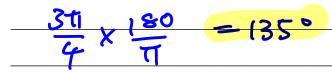
Section B: Warm Up (13 Marks)

INSTRUCTION:

- Regular: 13 Marks. 13 Minutes Writing.
- **Extension: Skip.**

Question 1 (7 marks)

a. Find $\left(\frac{3\pi}{4}\right)^c$ in degrees. (1 mark)



b. Find 150° in radians. (1 mark)

c. Determine the period of sin(32). (1 mark)

d. Determine the period of $\tan \left(\frac{\pi x}{3}\right)$. (1 mark)

$$\frac{\pi}{6} = \frac{\pi}{1/3} = \pi \times \frac{3}{11} = 3$$

e. Evaluate $\sin\left(\frac{3\pi}{2}\right)$. (1 mark)

Q: 3/4

$$R: = - sn(\Xi)$$

f. Evaluate $\cos\left(-\frac{\pi}{6}\right)$. (1 mark)

12.4

$$\frac{\omega:T}{P:Z} = + \omega s(Z)$$

5: + = 3

g. Evaluate $\tan\left(\frac{7\pi}{4}\right)$ (1 mark)

Q:4 <u>=</u>

即等

<u>S: —</u>

Question 2 (6 marks)

Given that $\sin(x) = \frac{5}{13}$ and $\frac{\pi}{2} < x < \pi$, find:

a. cos(x). (2 marks)

Pythag.	tric
$\beta r_{\lambda}^{2} + \omega s_{\lambda}^{2} = 1$	sin
(5)2+cos2=1	
(15) = 144	W
169 WIN I 12	

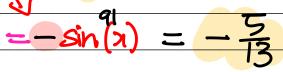
triangle
$$\frac{3}{\sin(x)} = \frac{5}{3}$$

b. tan(x). (1 mark)

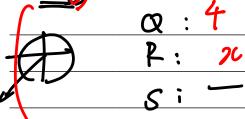
$$tun(x) = \pm \frac{5}{10}$$

$$tun(x) = -\frac{5}{12}$$

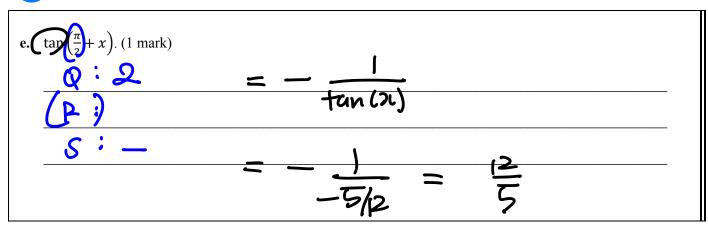
c. $\cos(x + \frac{\pi}{2})(1 \text{ mark})$ (P) 5



d. $\sin (2\pi - 1) (1 \text{ mark})$



$$= -sin(x)$$



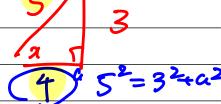
Section C: Exam 1 Questions (17 Marks)

INSTRUCTION:

- Regular: 17 Marks. 5 Minutes Reading. 25 Minutes Writing.
- > Extension: 17 Marks. 5 Minutes Reading. 17 Minutes Writing.

Question 3 (5 marks)

a. What value(s) can cos(x) take given that $sin(x) = \frac{3}{5}$? (8 marks)



b. (Hence) find the possible value(s) of tan(x). (2 marks)

$$\frac{1}{\tan(x)} = \frac{\sin(x)}{\cos(x)} = \frac{3}{5} \div (\pm \frac{4}{5}) = \pm \frac{3}{4}$$

Question 4 (2 marks)

Given that the period of the function $tan(n^2x)$ (§ 2) Find the value(s) of n.

$$M = \pm \sqrt{\frac{1}{2}}$$

Question 5 (7 marks)

Given that $sin(\alpha) = m$, and $cos(\beta) = 0.2$.

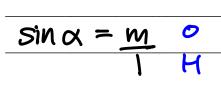
a. Find the value of $\cos\left(\frac{\pi}{2} - \alpha\right)$. (2 marks)

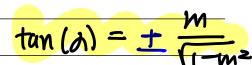
$$= M$$

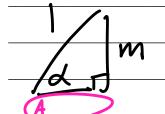
b. Find the value of $\sin\left(\frac{3\pi}{2} - \beta\right)$. (2 marks)

$$=$$
 $-\cos(\beta)$

c. Find the value(s) of $tan(\alpha)$. (3 marks) in terms of







$$A = -1 \int [-m^2]$$

Question 6 (3 marks)

Consider the functions:

$$f(x) = \sin(nx)$$
 and $g(x) = \cos(nx)$

For what integer value of n will f(x) = g(x) have exactly 6 solutions for $x \in [0, 2\pi]^2$ Justify your answer.

$$Sin(nn) = cos(nn)$$

tan: 1 period = 1. 501

period = OT = I

taulnz)=

(n=3)

Section D: Tech Active Exam Skills

<u>Calculator Commands:</u> Solving Trigonometric Functions

- **▶** TI
 - solve(trig(..) = a, x) | domain restriction
 - | is under control equal.
- Casio
 - solve(trig(..) = a, x) | domain restriction
 - | is under maths 3.

Mathematica

Solve[trig[] == a && domain restriction, x]

Section E: Exam 2 Questions (26 Marks)

INSTRUCTION:

- Regular: 26 Marks. 5 Minutes Reading. 35 Minutes Writing.
- > Extension: 26 Marks. 5 Minutes Reading. 26 Minutes Writing.

Question 7 (1 mark)

 $\frac{\pi}{2}$ radians in degrees is given by:

A. 30°

亚× 180

B. 90°

C. 15°

D. 60°

 $\frac{\pi}{2} \cdot \frac{180}{\pi}$

90

Question 8 (1 mark)

repeating - penioo

For what values of k will sin(x + k) = sin(x)?

A. $2n\pi, n \in Z$

B. π

C. 3π

 $\mathbf{D.} \ \frac{\pi}{2}$

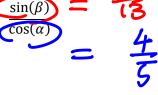
N

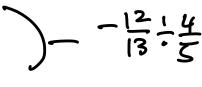
ONTOUREDUCATION

VCE Methods ½ Questions? Message +61 440 138 726

Question 9 (1 mark)

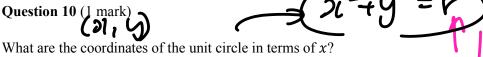
Given that $\sin(\alpha) = \frac{3}{5}$ and $\cos(\beta) = \frac{5}{13}$, with $\alpha \in (0, \frac{\pi}{2})$ and $\beta \in (\frac{3\pi}{2}, 2\pi)$. Evaluate,





$$= -\frac{15}{13}$$

Question 10 (1 mark)



A. $(x,\sqrt{1-x^2})$

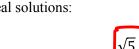
B.
$$(x, \pm \sqrt{1 - x^2})$$

$$C. \left(\sqrt{1-x^2}, x\right)$$

6.
$$(\sqrt{1-x^2}, -\sqrt{1-x^2})$$

Question 11 (1 mark)

The following equation las no real solutions:

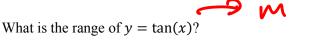


ons:
$$\ln(n^2 x) = \frac{\sqrt{5}}{2}, \quad 0 < x < 2\pi$$

Which of the following is the best explanation for why this is the case?

- **A.** We are not given the value of n.
- **B.** There are real solutions but they are not in the domain $x \in (0, 2\pi)$.
- C. The range of the sine function is [-1, 1] but $\frac{\sqrt{5}}{2} > 1$.
- **D.** $\frac{\sqrt{5}}{2}$ is inside the domain $x \in (0, 2\pi)$.

Question 12 (1 mark)



- $\mathbf{A}. R$
- $\mathbf{B}. R^+$
- C. [-1,1]
- **D.** $R \setminus \left\{\frac{n\pi}{2}\right\}$

Question 13 (1 mark)

Solve the following equation for the given domain:

$$\sqrt{3}\tan\left(x-\frac{\pi}{2}\right)=1, \quad x\in[0,\pi]$$

solve $\sqrt{3} \cdot \tan \left(x - \frac{\pi}{2}\right) = 1, x | 0 \le x \le \pi$ $x = \frac{2 \cdot \pi}{3}$

Question 14 (1 mark)

Why does tan(x) have a period of π ?

- **A.** It is asymptotic.
- **B.** Its values repeat every π radians.
- C. cos(x) and sin(x) has a period of π .
- **D.** Its period is not π .

Question 15 (1 mark)

Which of the following equations is true?

$$\sin\left(\frac{\pi}{2} - x\right) = -\cos(x)$$

$$\operatorname{Sin}\left(\frac{3\pi}{2} - x\right) = \operatorname{Os}(x)$$

C.
$$\cos\left(\frac{\pi}{2} + x\right) = -\sin(x)$$

$$\sum_{n=0}^{\infty} \left(\frac{\pi}{2} + x\right) = \sin(x)$$

Question 16 (1 mark)

How many x-intercepts will $\sin(nx)$ have over $(0, n\pi]$?

how many partoss?

A.
$$\frac{2\pi}{n}n$$

B.
$$n^2$$

C. *n*

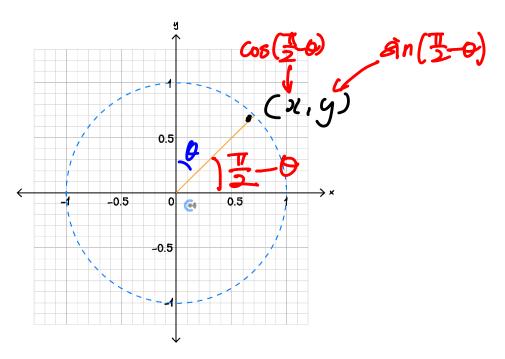
$$\frac{N\Pi}{2\pi} = N\Pi \times \frac{N}{2\pi}$$

$$= n^2 ponces$$

D.
$$n^2 + 1$$

Question 17 (6 marks)

Consider the following unit circle:



a. If the line makes an angle of, θ , with the **y-axis**. Express the coordinates of the unit circle in terms of θ . (2 marks)

$$(x,y) = (\cos(\frac{\pi}{2} - 0), \sin(\frac{\pi}{2} - 0))$$

$$= (f \sin(0), + \cos(0))$$

$$= (\sin(0), \cos(0))$$

b. Find the coordinates in terms of y, for x > 0. (2 marks)

$$\frac{\chi^{2} + y^{2} = Y^{2}}{\chi^{2} + y^{2} = \{-y^{2} \\ \chi = 1, -y^{2}\}$$

$$\frac{\chi^{2} + y^{2} = \{-y^{2} \\ \chi = 1, -y^{2}\}$$

c. Express $tan(\theta)$ in terms of y, for x > 0. (2 marks)

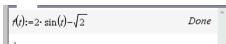
tan(0) = M = 4 = 4 = 1/1-y2

Question 18 (10 marks)

The height of a point on the pump of an oil rig relative to the ground can be modelled using the following function:

$$f(t) = 2\sin(t) - \sqrt{2}, \text{ for } t \ge 0$$

where y = 0 is the ground level and t is measured in seconds.



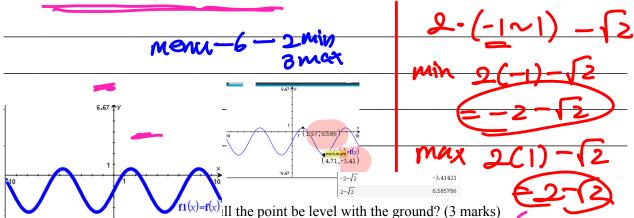
a. How long does it take for the point to first return to its starting height? (1 mark)

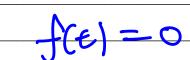
Start f(0) = - [2

solve
$$(f(t) = -\sqrt{2}, t)$$
 $t = n3 \cdot \pi$
solve $(f(t) = -\sqrt{2}, t) | 0 \le t \le 2 \cdot \pi$
 $t = 0$ of $t = \pi$ or $t = 2 \cdot \pi$

b. what is the maximum, and minimum height of the point? (2 marks)

Hint: \sin and \cos can only be between -1 and 1.

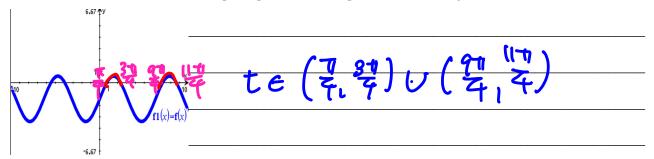




$$solve(f(t)=-0,t)|0 \le t \le 4 \cdot \pi$$

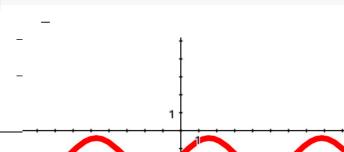
$$t = \frac{\pi}{4} \text{ or } t = \frac{3 \cdot \pi}{4} \text{ or } t = \frac{9 \cdot \pi}{4} \text{ or } t = \frac{11 \cdot \pi}{4}$$

ii. Hence, state the values of $t \in [0, 4\pi]$ for which the point is above the ground level. (2 marks)



d. The height of another point on the pump is modelled by $g(t) = \sin(t) - \sqrt{2}$ instead. Can this point reach the ground level? Justify. (2 marks)

 $g(t) := \sin(t) - \sqrt{2}$ Done



no - Since
max 1s below

O Ground (end

Space f2(x)=g(x)

Section F: Extension Exam 1 (9 Marks)

INSTRUCTION:

- Regular: Skip.
- > Extension: 9 Marks. 10 Minutes Writing.

Question 19 (9 marks)

Solve the following trigonometric equations, giving all solutions in the given domain.

a. Solve the equation $\sin(2x) = \frac{1}{2}$ for $0 \le x \le 2\pi$. (2 marks)

Let $2x = \theta$. Then solve $\sin(\theta) = \frac{1}{2} \implies \theta = \frac{\pi}{6}, \frac{5\pi}{6}$ (1M) Then,

$$2x = \frac{\pi}{6}, \frac{5\pi}{6} \implies x = \frac{\pi}{12}, \frac{5\pi}{12}$$

Also, $2x \in [0, 4\pi]$, so repeat the angles in that interval:

$$\theta = \frac{13\pi}{6}, \frac{17\pi}{6} \implies x = \frac{13\pi}{12}, \frac{17\pi}{12}$$

Solutions: $x = \frac{\pi}{12}, \frac{5\pi}{12}, \frac{13\pi}{12}, \frac{17\pi}{12}$ (1A)

b. Solve the equation $\tan^2(x) = 3$ for $0 \le x < 2\pi$. (2 marks)

Take square root:

$$\tan(x) = \pm \sqrt{3} \implies x = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$$

Solutions: $x = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$, (1M at least one correct solution, 1A all correct)

c. Solve the equation $\sin(x) = \cos(x)$ for $0 \le x < 2\pi$. (2 marks)

Divide both sides: $tan(x) = 1 \implies x = \frac{\pi}{4}, \frac{5\pi}{4}$ (1M, getting tan equation)

Solutions: $x = \frac{\pi}{4}, \frac{5\pi}{4}$ (1A)

d. Solve the equation $2\cos^2(x) - 3\cos(x) + 1 = 0$ for $-\pi \le x \le \pi$. (3 marks)

Let $y = \cos(x)$, then:

$$2y^2 - 3y + 1 = 0 \implies (2y - 1)(y - 1) = 0 \implies y = \frac{1}{2}, 1 \quad (1M)$$

And $cos(x) = \frac{1}{2} \implies x = -\frac{\pi}{3}, \frac{\pi}{3}$ (1M for two different cos equations) Solutions: $x = 0, -\frac{\pi}{3}, \frac{\pi}{3}$ (1A)

Section G: Extension Exam 2 (12 Marks)

INSTRUCTION:

- Regular: Skip.
- Extension: 12 Marks. 15 Minutes Writing.

Question 20 (5 marks)

Consider the following two functions:

$$g(x) = \sin(x)$$
 and $f(x) = \cos(x - k)$, $0 \le x \le 2\pi$

a. For what value of k will f(x) have three x-intercepts? For this value of k state the value(s) of x where f(x) crosses the x-axis. Just provide one possible value for k. (2 marks)

$$k = \frac{\pi}{2}$$
. (1M or any $k = \frac{\pi}{2} + n\pi, n \in \mathbb{Z}$) $x = 0, \pi, 2\pi$. (1A)

- **b.** Suppose $k \in [0, 2\pi]$. Provide a value of k for which f(x) = g(x) has:
 - i. 3 solutions. (1 mark)

 $k = \frac{3\pi}{2}. (1A)$

ii. 2 solutions. (1 mark)

 $k = \pi$. (1A or any $k \in [0, 2\pi]$ except for $k = \frac{\pi}{2}, \frac{3\pi}{2}$)

iii. Infinitely many solutions. (1 mark)

 $k = \frac{\pi}{2}$. (1A)

Question 21 (7 marks)

The temperature T(t) in degrees Celsius inside an office at time t hours after midnight is modelled by:

$$T(t) = 21 + 3\cos\left(\frac{\pi}{6}(t-4)\right),\,$$

where $0 \le t \le 24$.

a. State the maximum and minimum temperatures in the office, and the times at which they occur. (2 marks)

b. Find the **exact** value of *t* for which the temperature is first 23°C. What time of day, to the nearest minute, does this *t* correspond to? (3 marks)

We solve: $21 + 3\cos\left(\frac{\pi}{6}(t - 4)\right) = 23 \implies \cos\left(\frac{\pi}{6}(t - 4)\right) = \frac{2}{3} \quad (1M)$ Now solve: $\frac{\pi}{6}(t - 4) = \pm \cos^{-1}\left(\frac{2}{3}\right) \implies t = 4 \pm \frac{6}{\pi}\cos^{-1}\left(\frac{2}{3}\right)$ **Earliest time:** $t = 4 - \frac{6}{\pi}\cos^{-1}\left(\frac{2}{3}\right) \quad (1A)$ This is $t \approx 2.3968$ so at 2: 24 am. (1A)

c. What fraction of the day is the temperature above 22.5°C? (A day starts at midnight and ends at midnight 24 hours later.) (2 marks)

Solve: $21 + 3\cos\left(\frac{\pi}{6}(t-4)\right) = 22.5 \implies \cos\left(\frac{\pi}{6}(t-4)\right) = \frac{1}{2}$ $\frac{\pi}{6}(t-4) = \pm \frac{\pi}{3} \implies t-4 = \pm 2 \implies t = 2 \text{ and } t = 6 \quad \text{(1M)}$ So temperature is above 22.5°C between t=2 and t=6. Since the period is 12, it also occurs between t=14 and t=18. Total duration = (6-2) + (18-14) = 8 hours

Fraction of the day = $\frac{8}{24} = \frac{1}{3}$ (1A)

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

<u>1-on-1 Video Consults</u>	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 138 726 with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

