

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Mathematical Methods ½ Circular Function I [0.16]

Workshop

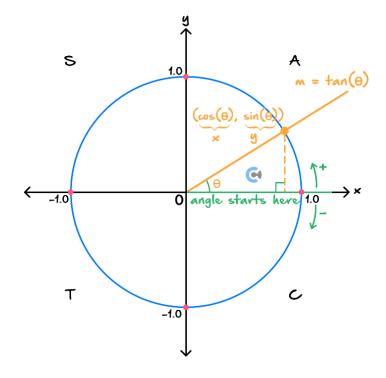
Error Logbook:

New Ideas/Concepts	Didn't Read Question
Pg / Q #:	Pg / Q #:
Algebraic/Arithmetic/ Calculator Input Mistake	Working Out Not Detailed Enough
Pg / Q #:	Pg / Q #:
Notes:	Notes:

Section A: Recap

Radians and Degrees

$$\mathbf{1}^c = \left(\frac{180}{\pi}\right)^{\mathbf{0}}$$


$$\mathbf{1^o} = \left(\frac{\pi}{180}\right)^c$$

$$180^{\circ} = \pi^{c}$$

Unit Circle

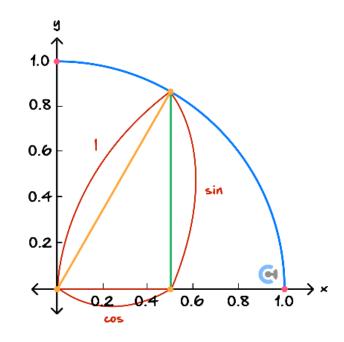
The unit circle is simply a circle of radius 1.

$$sin(\theta) = y$$

$$\cos(\theta) = x$$

$$tan(\theta) = gradient$$

Period of a Trigonometric Function


period of
$$sin(nx)$$
 and $cos(nx)$ functions = $\frac{2\pi}{n}$

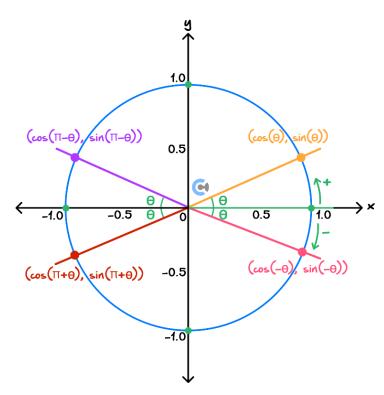
period of
$$tan(nx)$$
 functions = $\frac{\pi}{n}$

where n = coefficient of x and n > 0

Pythagorean Identities

$$\sin^2(\theta) + \cos^2(\theta) = 1$$

> Can be used for finding one trigonometry function by using the other.


The Exact Values Table

x	0 (0°)	$\frac{\pi}{6}$ (30°)	$\frac{\pi}{4} (45^{\circ})$	$\frac{\pi}{3} \ (60^{\circ})$	$\frac{\pi}{2} \ (90^{\rm o})$
sin(x)	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan(x)	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Undefined

Supplementary Relationships

- Simply look at the quadrant to find the correct sign.
 - Second Quadrant $(\pi \theta)$

$$\cos(\pi - \theta) = -\cos(\theta)$$

$$\sin(\pi - \theta) = +\sin(\theta)$$

$$\tan(\pi - \theta) = -\tan(\theta)$$

• Third Quadrant $(\pi + \theta)$

$$\cos(\pi + \theta) = -\cos(\theta)$$

$$\sin(\pi + \theta) = -\sin(\theta)$$

$$\tan(\pi + \theta) = + \tan(\theta)$$

G Fourth Quadrant $(-\theta)$

$$\cos(-\theta) = +\cos(\theta)$$

$$\sin(-\theta) = -\sin(\theta)$$

$$\tan(-\theta) = -\tan(\theta)$$

Complementary Relationships

- Consider the quadrant for signs.
 - \bullet First Quadrant $\left(\frac{\pi}{2} \theta\right)$

$$\cos\left(\frac{\pi}{2} - \theta\right) = +\sin(\theta)$$

$$\sin\left(\frac{\pi}{2} - \theta\right) = +\cos(\theta)$$

$$\tan\left(\frac{\pi}{2} - \theta\right) = +\frac{1}{\tan(\theta)}$$

G Second Quadrant $\left(\frac{\pi}{2} + \theta\right)$

$$\sin\left(\frac{\pi}{2} + \theta\right) = +\cos(\theta)$$

$$\cos\left(\frac{\pi}{2} + \theta\right) = -\sin(\theta)$$

CONTOUREDUCATION

$$\tan\left(\frac{\pi}{2} + \theta\right) = -\frac{1}{\tan(\theta)}$$

 $\bullet \quad \text{Third Quadrant} \left(\frac{3\pi}{2} - \theta \right)$

$$\sin\left(\frac{3\pi}{2} - \theta\right) = -\cos(\theta)$$

$$\cos\left(\frac{3\pi}{2}-\theta\right)=-\sin(\theta)$$

$$\tan\left(\frac{3\pi}{2} - \theta\right) = \frac{1}{\tan(\theta)}$$

• Fourth Quadrant $\left(\frac{3\pi}{2} + \theta\right)$

$$\sin\left(\frac{3\pi}{2} + \theta\right) = -\cos(\theta)$$

$$\cos\left(\frac{3\pi}{2} + \theta\right) = +\sin(\theta)$$

$$\tan\left(\frac{3\pi}{2} + \theta\right) = -\frac{1}{\tan(\theta)}$$

- > Steps:
 - 1. Note complementary relationship by identifying a vertical angle $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$.
 - **2.** Equate to the opposite trigonometric function $\cos / \sin / \frac{1}{\tan(\theta)}$
 - **3.** Determine the sign (\pm) by considering the quadrant.

Supplementary v/s Complementary

Supplementary: $trig(Horizontal\ Angle \pm \theta)$

Complementary: $trig(Vertical\ Angle \pm \theta)$

Particular Solutions Definition

- Steps:
 - 1. Make the trigonometric function the subject.

Solving trigonometric equations for finite solutions.

- **2.** Find the necessary angle for one period.
- **3.** Solve for *x* by equating the necessary angles to the inside of the trigonometric functions.
- **4.** Add and subtract the period to find all other solutions in the domain.

CONTOUREDUCATION

Section B: Warm Up (13 Marks)

INSTRUCTION:

- Regular: 13 Marks. 13 Minutes Writing.
- **Extension: Skip.**

Question 1 (7 marks)

- **a.** Find $\left(\frac{3\pi}{4}\right)^c$ in degrees. (1 mark)
- **b.** Find 150° in radians. (1 mark)
- **c.** Determine the period of $\sin(3x)$. (1 mark)
- **d.** Determine the period of $\tan\left(\frac{\pi x}{3}\right)$. (1 mark)

- e. Evaluate $\sin\left(\frac{3\pi}{2}\right)$. (1 mark)
- **f.** Evaluate $\cos\left(-\frac{\pi}{6}\right)$. (1 mark)
- g. Evaluate $\tan\left(\frac{7\pi}{4}\right)$. (1 mark)

Question 2 (6 marks)

Given that $\sin(x) = \frac{5}{13}$ and $\frac{\pi}{2} < x < \pi$, find:

a. cos(x). (2 marks)

b. tan(x). (1 mark)

c. $\cos\left(x + \frac{\pi}{2}\right)$. (1 mark)

d. $\sin (2\pi - x)$. (1 mark)

e.	$\tan\left(\frac{\pi}{2} + x\right)$. (1 mark)

Space for Personal Notes		

Section C: Exam 1 Questions (17 Marks)

INSTRUCTION:

- Regular: 17 Marks. 5 Minutes Reading. 25 Minutes Writing.
- Extension: 17 Marks. 5 Minutes Reading. 17 Minutes Writing.

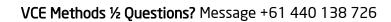
Question 3 (5 marks)

a. What value(s) can cos(x) take given that $sin(x) = \frac{3}{5}$? (3 marks)

b. Hence, find the possible value(s) of tan(x). (2 marks)

estion 4 (2 marks)			
Given that the period of the function $tan(n^2x)$ is 2. Find the value(s) of n .			
ace for Personal Notes			

Question 5 (7 marks)


Given that $sin(\alpha) = m$, and $cos(\beta) = 0.2$.

a. Find the value of $\cos\left(\frac{\pi}{2} - \alpha\right)$. (2 marks)

b. Find the value of $\sin\left(\frac{3\pi}{2} - \beta\right)$. (2 marks)

c. Find the value(s) of $tan(\alpha)$. (3 marks)

Question 6 (3 marks)	
Consider the functions:	
	$f(x) = \sin(nx)$ and $g(x) = \cos(nx)$
For what integer value of n	will $f(x) = g(x)$ have exactly 6 solutions for, $x \in [0, 2\pi]$? Justify your answer.

Section D: Tech Active Exam Skills

<u>Calculator Commands:</u> Solving Trigonometric Functions

- **▶** TI
 - solve(trig(..) = a, x) | domain restriction
 - | is under control equal.
- Casio
 - solve(trig(..) = a, x) | domain restriction
 - | is under maths 3.
- Mathematica
 - Solve[trig[] == a && domain restriction, x]

Section E: Exam 2 Questions (26 Marks)

INSTRUCTION:

- Regular: 26 Marks. 5 Minutes Reading. 35 Minutes Writing.
- > Extension: 26 Marks. 5 Minutes Reading. 26 Minutes Writing.

Question 7 (1 mark)

 $\frac{\pi}{2}$ radians in degrees is given by:

- **A.** 30°
- **B.** 90°
- **C.** 15°
- **D.** 60°

Question 8 (1 mark)

For what values of k will sin(x + k) = sin(x)?

- **A.** $2n\pi, n \in Z$
- **B.** π
- C. 3π
- $\mathbf{D.} \ \frac{\pi}{2}$

Question 9 (1 mark)

Given that $\sin(\alpha) = \frac{3}{5}$ and $\cos(\beta) = \frac{5}{13}$, with $\alpha \in \left(0, \frac{\pi}{2}\right)$ and $\beta \in \left(\frac{3\pi}{2}, 2\pi\right)$. Evaluatte,

$$\frac{\sin(\beta)}{\cos(\alpha)}$$

- A. $\frac{13}{15}$
- **B.** $-\frac{15}{13}$
- C. $\frac{39}{25}$
- **D.** $-\frac{25}{39}$

Question 10 (1 mark)

What are the coordinates of the unit circle in terms of x?

- **A.** $(x, \sqrt{1-x^2})$
- **B.** $(x, \pm \sqrt{1-x^2})$
- $\mathbf{C.} \ \left(\sqrt{1-x^2}, x\right)$
- **D.** $(\sqrt{1-x^2}, -\sqrt{1-x^2})$

Question 11 (1 mark)

The following equation has no real solutions:

$$\sin(n^2 x) = \frac{\sqrt{5}}{2} , \qquad 0 < x < 2\pi$$

Which of the following is the best explanation for why this is the case?

- **A.** We are not given the value of n.
- **B.** There are real solutions but they are not in the domain $x \in (0, 2\pi)$.
- C. The range of the sine function is [-1, 1] but $\frac{\sqrt{5}}{2} > 1$.
- **D.** $\frac{\sqrt{5}}{2}$ is inside the domain $x \in (0, 2\pi)$.

Question 12 (1 mark)

What is the range of $y = \tan(x)$?

- **A.** *R*
- \mathbf{B} , R^{-}
- C. [-1,1]
- **D.** $R \setminus \left\{\frac{n\pi}{2}\right\}$

Question 13 (1 mark)

Solve the following equation for the given domain:

$$\sqrt{3}\tan\left(x-\frac{\pi}{2}\right) = 1, \quad x \in [0,\pi]$$

- A. $\frac{\pi}{3}$
- B. $\frac{\pi}{6}$
- C. $\frac{5\pi}{6}$
- **D.** $\frac{2\pi}{3}$

Question 14 (1 mark)

Why does tan(x) have a period of π ?

- **A.** It is asymptotic.
- **B.** Its values repeat every π radians.
- C. cos(x) and sin(x) has a period of π .
- **D.** Its period is not π .

Question 15 (1 mark)

Which of the following equations is true?

A.
$$\sin\left(\frac{\pi}{2} - x\right) = -\cos(x)$$

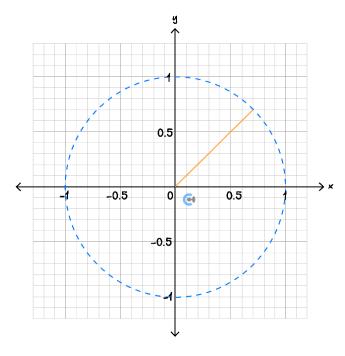
B.
$$\sin\left(\frac{3\pi}{2} - x\right) = \cos(x)$$

$$\mathbf{C.} \ \cos\left(\frac{\pi}{2} + x\right) = -\sin(x)$$

$$\mathbf{D.} \ \cos\left(\frac{\pi}{2} + x\right) = \sin(x)$$

Question 16 (1 mark)

How many x-intercepts will sin(nx) have over $(0, n\pi]$?


A.
$$\frac{2\pi}{n}n$$

- **B.** n^2
- **C.** *n*
- **D.** $n^2 + 1$

Question 17 (6 marks)

Consider the following unit circle:

a. If the line makes an angle of, θ , with the **y-axis**. Express the coordinates of the unit circle in terms of θ . (2 marks)

b. Find the coordinates in terms of y, for x > 0. (2 marks)

c. Express tan(θ) in terms of y , for $x > 0$. (2 marks)			
	c.	Express $tan(\theta)$ in terms of y, for $x > 0$. (2 marks)	
Space for Personal Notes			
Space for Personal Notes			
Space for Personal Notes			-
Space for Personal Notes			
Space for Personal Notes			
Space for Personal Notes			-
Space for Personal Notes			
Space for Personal Notes			-
Space for Personal Notes			
Space for Personal Notes			
Space for Personal Notes			-
Space for Personal Notes			
Space for Personal Notes			
Space for Personal Notes			
Space for Personal Notes			
Space for Personal Notes			
Space for Personal Notes			
Space for Personal Notes			
	Sp	pace for Personal Notes	
	l [']		
	I		
	I		
	I		
	I		
	I		
	I		
	I		

Question 18 (10 marks)

The height of a point on the pump of an oil rig relative to the ground can be modelled using the following function:

$$f(t) = 2\sin(t) - \sqrt{2}$$
, for $t \ge 0$

where y = 0 is the ground level and t is measured in seconds.

- **a.** How long does it take for the point to first return to its starting height? (1 mark)
- **b.** What is the maximum, and minimum height of the point? (2 marks) **Hint**: sin and cos can only be between -1 and 1.

c.

i. For what values of $t \in [0.4\pi]$, will the point be level with the ground? (3 marks)

	ii.	Hence, state the values of $t \in [0, 4\pi]$ for which the point is above the ground level. (2 marks)
d.	The	e height of another point on the pump is modelled by $g(t) = \sin(t) - \sqrt{2}$ instead. Can this point reach the und level? Justify. (2 marks)
Sp	ace	for Personal Notes

CONTOUREDUCATION

Section F: Extension Exam 1 (9 Marks)

INSTRUCTION:

- Regular: Skip.
- Extension: 9 Marks. 10 Minutes Writing.

Question 19 (9 marks)

Solve the following trigonometric equations, giving all solutions in the given domain.

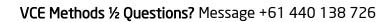
a. Solve the equation $\sin(2x) = \frac{1}{2}$ for $0 \le x \le 2\pi$. (2 marks)

b. Solve the equation $\tan^2(x) = 3$ for $0 \le x < 2\pi$. (2 marks)

c.	Solve the equation $sin(x) = cos(x)$ for $0 \le x < 2\pi$. (2 marks)
d.	Solve the equation $2\cos^2(x) - 3\cos(x) + 1 = 0$ for $-\pi \le x \le \pi$. (3 marks)
Sp	pace for Personal Notes

Section G: Extension Exam 2 (12 Marks)

INSTRUCTION:


- Regular: Skip.
- Extension: 12 Marks. 15 Minutes Writing.

Question 20 (5 marks)

Consider the following two functions:

$$g(x) = \sin(x)$$
 and $f(x) = \cos(x - k)$, $0 \le x \le 2\pi$

a. For what value of k will f(x) have three x-intercepts? For this value of k state the value(s) of x where f(x) crosses the x-axis. Just provide one possible value for k. (2 marks)

b. Suppose $k \in [0, 2\pi]$. Provide a value of k for which $f(x) = g(x)$ has:					
i.	3 solutions. (1 mark)	_			
		-			
ii.	2 solutions. (1 mark)	-			
		-			
111.	Infinitely many solutions. (1 mark)	-			
		-			
Space for Personal Notes					

Question 21 (7 marks)

The temperature T(t) in degrees Celsius inside an office at time t hours after midnight is modelled by:

$$T(t) = 21 + 3\cos\left(\frac{\pi}{6}(t-4)\right),$$

⁄h	$ere 0 \le t \le 24.$
•	State the maximum and minimum temperatures in the office, and the times at which they occur. (2 marks)
٠.	Find the exact value of t for which the temperature is first 23°C. What time of day, to the nearest minute, do this t correspond to? (3 marks)

c.	What fraction of the day is the temperature above 22.5° C? (A day starts at midnight and ends at midnight 24
	hours later.) (2 marks)
Sp	ace for Personal Notes
•	

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Mathematical Methods ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-methods-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 138 726</u> with questions. Save the contact as "Contour Methods".

Booking Link for Consults
bit.ly/contour-methods-consult-2025

Number for Text-Based Support +61 440 138 726

