

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Chemistry ¾
Rate-Yield Conflict [2.9]

Test

20 Marks. 1 Minute Reading. 17 Minutes Writing.

Results:

Test Questions	/15	
Extension Questions	/5	

Section A: Test Questions (15 Marks)

On	estion	1	(3	marks)	١
Vu	CSUUII		v	marks	J

Tick whether the following statements are **true** or **false**.

	Statement	True	False
a.	Adding an inert gas to a system at equilibrium increases the overall pressure of the system and therefore the system will react by trying to decrease the pressure of the system.		
b.	A particular system is at equilibrium. If the vessel is heated up, to partially oppose this change, the system will always favour the forward, endothermic reaction.		
c.	If a concentration-time graph has no spikes/sudden changes after a change is made, the change which must have been made is a temperature change.		
d.	If a catalyst is added to a system at equilibrium, it will not alter the position of equilibrium.		
e.	A rate-yield conflict arises whenever the temperature of an equilibrium system is changed.		
f.	If the pressure of a gaseous system is increased, the rate of reaction will increase, irrespective of the effect on yield.		

Space	for	Personal	Notes
	. • .		

Question 2 (12 marks)

ii.

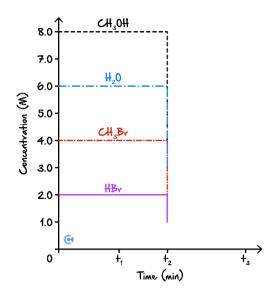
Bromomethane, CH₃Br, is a toxic, odourless and colourless gas. It is used by quarantine authorities to kill insect pests.

A simplified reaction for its synthesis is:

$$CH_3OH(g) + HBr(g) \rightleftharpoons CH_3Br(g) + H_2O(g)$$
 $\Delta H = -37.2 \ kJ/mol$ at 298 K

The manufacturer of this chemical investigates reaction conditions that could affect the time the process takes and the percentage yield.

- **a.** Predict the effect of each change given below on the **rate** of production of bromomethane by circling your prediction (increase, no change or decrease). Briefly justify your choice.
 - i. Increasing temperature (at a constant volume). (2 marks)


	Increase	No change	Decrease	
Reasoning:				
Increasing pressi	ure (at a constant ten	nperature). (2 marks)		
	Increase	No change	Decrease	
Reasoning:				

	Increasing pressure (at a constant temperature). (2 marks)				
		Increase	No change	Decrease	
	Reasoning:				
i.	Continuously rem	oving the product (CH ₃ Br (at a constant vol	ume and temperature). (2 marks)	
		Increase	No change	Decrease	
	Reasoning:				

c. The following concentration-time graph represents the system at equilibrium at time t_1 .

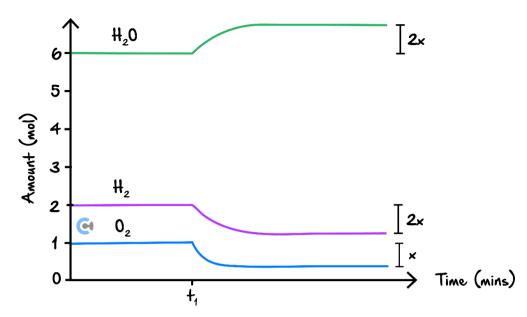
At time t_2 , a change was made to the system:

i. State what change was made. (1 mark)

equilibrium is re-established at time t_3 . (1 mark)

ii. On the graph above, sketch how the concentrations of all species would change after time t_2 , until

d. State what could be done to the system in order to increase its K_c value. Justify your answer. (2 marks)


Space for Personal Notes

Section B: Extension Questions (5 Marks)

Qι	estion 3 (5 marks)
	e combustion of hydrogen is a vital one for society, as explored throughout your VCE Chemistry studies this ar. In fact, when steam is produced, the system establishes an equilibrium:
	$2H_2(g) + O_2(g) \rightleftharpoons 2H_2O(g)$
a.	Propose what can be done to this system at equilibrium, such that the yield of greenhouse gases is reduced, whilst simultaneously altering the K_c value for the system. Justify your reasoning. (2 marks)
b.	Hence, explain why a catalyst is not typically utilised in industry for this particular reaction whenever the aim is to minimise the production of steam. (1 mark)

c. The following mol-time graph depicts the **amounts** of each of the three species originally at equilibrium, and how they are impacted after a change is made at time t_1 .

i. State the two possible changes which could have been made at time t_1 to produce the graph above. (1 mark)

1._____

2._____

ii. If both changes mentioned in part c.i. were implemented **together** at time t_1 , outline the optimal temperature and pressure conditions that would be used in industry, assuming the goal was to produce as much steam as possible, as fast as possible. (1 mark)

Space for Personal Notes

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Chemistry ¾

Free 1-on-1 Support

Be Sure to Make the Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-chemistry-consult- 2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 137 304</u> with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

