

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Chemistry ¾
Equilibrium [2.7]
Test Solutions

20 Marks. 1 Minute Reading. 16 Minutes Writing.

Results:

Test Questions	/15
Extension	/5

Section A: Test Questions (15 Marks)

	Statement	True	False
a.	If a reaction is reversible, this means that both the forward and backward reactions occur at the same time.	✓	
b.	In VCE chemistry, we study equilibria occurring in open systems.		✓
2.	A dynamic equilibrium is established when the forward and backward reactions occur at the same rate and subsequently stop reacting.		✓
d.	The K_c value gives you the ratio of the concentration of reactants to the concentration of products.		✓
е.	Equilibria in which solids and liquids are present are assigned a 'concentration' value of 1, and consequently ignored in K_c and Q_c expressions.	/	
f.	If a particular reaction has a large extent of reaction, its Q_c value will be high.		✓
g.	If the Q_c value is less than the K_c value, the rate of the forward reaction will be greater than the rate of the reverse reaction until equilibrium is established.	✓	
n.	RICE tables are used to find the moles of each reactant and product at equilibrium, and then these values are directly plugged into the K_c expression to obtain the equilibrium constant.		~

Space for Personal Notes

Question 2 (6 marks)

Henry is investigating the reaction between nitrogen and oxygen to produce nitrogen monoxide:

$$N_2(g) + O_2(g) \implies 2NO(g)$$
 K_c at 25°C = 2.20 × 10⁻⁵

a. Explain what can be said about the extent of the reaction above at 25°C. Justify your answer with reference to the position of equilibrium. (2 marks)

 $K_c < 10^{-4}$ so, the reaction shown occurs to a small extent (1). This means that at equilibrium, there are much more reactants present than products; the position of equilibrium lies to the left/towards the reactants (2).

b.

i. Calculate the K_c value for the reaction, $NO(g) \rightleftharpoons \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$ at 25°C. (1 mark)

 $K_{c}(new) = \frac{1}{\int K_{c}(old)} = \frac{1}{\int 2.2 \times 10^{-5}}$ $= 2.13 \quad (ao unity (3.5f)$

ii. For the reaction provided in **part b. i.** if the reaction takes place in a 2.00 L vessel and $[NO] = 2.30 \times 10^2 \, M$ and $[O_2] = 1.80 \times 10^3 \, M$ at equilibrium, calculate the amount, in $M \, mol$, of N_2 which must be present in the vessel when the rates of the forward and reverse reactions are equal. (3 marks)

$$-K_{c} = \frac{\left[N_{2}\right]^{\frac{1}{2}}\left[o_{2}\right]^{\frac{1}{2}}}{\left(N_{2}\right)^{\frac{1}{2}}\left[o_{2}\right]^{\frac{1}{2}}} = \frac{\left[N_{2}\right]^{\frac{1}{2}}\left[o_{2}\right]^{\frac{1}{2}}}{\left(1.4 \times 10^{3}\right)^{\frac{1}{2}}}$$

$$= 1.336 \times 10^{6} M$$

$$= 213.2 = \frac{\left[N_{2}\right]^{\frac{1}{2}}\left(1.4 \times 10^{3}\right)^{\frac{1}{2}}}{2.3 \times 10^{2}}$$

$$= 1.336 \times 10^{6} \times 2.00 = 2.67 \times 10^{6} \text{ mol}$$

$$= 2.67 \text{ Mmol}$$

Question 3 (5 marks)

The following reversible reaction is being investigated in a laboratory:

$$2P(g) + 5Cl_2(g) \rightleftharpoons 2PCl_5(g)$$
 $K_c = 118.7 M^{-5} \text{ at } 100^{\circ}\text{C}$

The reaction was initiated by mixing 2.32 mol of phosphorus with 5.27 mol of chlorine in a sealed, 5.00 L evacuated vessel at 100°C. 10 minutes into the reaction, it is observed that the concentration of PCl₅ is 0.333 M.

a. Calculate the reaction quotient for this reaction once 10 minutes have elapsed. (3 marks)

	28(9)+	1 SC12 (9) i	= 2PC/s(3)	
ni (mol)	2.32	5.27	0	
 n, (mol)	- 1-665	-4.1625	+1.665	
 No mins (mol)	0-655	1.1075	1.665	
	D·/3)	0.2215	0.333	
	1:]		
 Pc =	[PCIs]	_ = . .75	0.333 ²	
			1.21 x10 + M-5	

b. State whether the system is at equilibrium 10 minutes into the reaction or not. If not, explain how the reactions will progress towards equilibrium. (1 mark)

 $Q_c \neq K_c \rightarrow$ system is not at equilibrium. Since $Q_c > K_c$, the system will favour the backwards reaction in order to establish equilibrium.

c. Had this reaction occurred in a compressed, 1.00 *L* vessel (still at 100°C), predict the effect this would have had on the equilibrium constant. (1 mark)

No effect $\rightarrow K_c$ value for a particular reaction is ONLY impacted by a change in temperature.

Section B: Extension (5 Marks)

Question 4 (5 marks)

Anika is investigating the production of hydrogen iodide via the reversible reaction between gaseous iodine and hydrogen in a closed vessel of volume *V* litres, according to the following equation:

$$I_2(g) + H_2(g) \rightleftharpoons 2HI(g)$$

The K_c value for this reaction is 26.9 at 300°C.

a. Given that Anika placed 3.20 *mol* of both H₂(g) and I₂(g) into the empty container at 300°C, calculate the amount of HI, in *mol*, that would have been present at equilibrium. (4 marks)

$$K_{c} = \frac{\left[\text{HI}\right]^{2}}{\left[\text{I}_{1}\right]\left[\text{H}_{1}\right]} = \frac{\left(\frac{2x}{V}\right)^{2}}{\left(\frac{3\cdot20-x}{V}\right)^{2}}$$

$$26.9 = \left(\frac{2x}{3\cdot20-x}\right)^{2}$$

$$\begin{array}{l} \Rightarrow 5.186(3.20-x) = 2x \\ 16.6 - 5.186x = 2x \\ \Rightarrow 7.186x = 16.6 \\ \Rightarrow x = 2.31 \text{ mol} \\ \therefore N_{\ell}(\text{MI}) = 2x = 2 \times 2.31 = 4.62 \text{ mol} \end{array}$$

b.	Anika decides to conduct the same experiment at a slightly cooler temperature to ensure her safety calculates the system's reaction quotient (Q_c) after 5 minutes, obtaining a value of 26.9. Explain may conclude about the position of equilibrium in this instance. (1 mark)	
	Cannot conclude anything as we do not know the K_c value at this new temperature. Therefore, we have nothing to compare the calculated Q_c value to, so we are unsure as to where the position of equilibrium lies.	

Space for Personal Notes		

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Chemistry ¾

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-chemistry-consult- 2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 137 304</u> with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

