

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Chemistry ¾
Equilibrium [2.7]
Test

20 Marks. 1 Minute Reading. 16 Minutes Writing.

Results:

Test Questions	/15
Extension	/5

Section A: Test Questions (15 Marks)

Ouestion	1	11	marke)
Question		(4	marks

Tick whether the following statements are **true** or **false**.

	Statement	True	False
a.	If a reaction is reversible, this means that both the forward and backward reactions occur at the same time.		
b.	In VCE chemistry, we study equilibria occurring in open systems.		
c.	A dynamic equilibrium is established when the forward and backward reactions occur at the same rate and subsequently stop reacting.		
d.	The K_c value gives you the ratio of the concentration of reactants to the concentration of products.		
e.	Equilibria in which solids and liquids are present are assigned a 'concentration' value of 1, and consequently ignored in K_c and Q_c expressions.		
f.	If a particular reaction has a large extent of reaction, its Q_c value will be high.		
g.	If the Q_c value is less than the K_c value, the rate of the forward reaction will be greater than the rate of the reverse reaction until equilibrium is established.		
h.	RICE tables are used to find the moles of each reactant and product at equilibrium, and then these values are directly plugged into the K_c expression to obtain the equilibrium constant.		

Question 2 (6 marks)

Henry is:	investigating	the reaction	between	nitrogen	and	oxygen	to produce	nitrogen	monoxide:
-----------	---------------	--------------	---------	----------	-----	--------	------------	----------	-----------

$$N_2(g) + O_2(g) \implies 2NO(g)$$
 K_c at 25°C = 2.20 × 10⁻⁵

a. Explain what can be said about the extent of the reaction above at 25°C. Justify your answer with reference to the position of equilibrium. (2 marks)

b.

i. Calculate the K_c value for the reaction, NO(g) $\Rightarrow \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$ at 25°C. (1 mark)

ii. For the reaction provided in **part b. i.** if the reaction takes place in a 2.00 L vessel and $[NO] = 2.30 \times 10^2 \, M$ and $[O_2] = 1.80 \times 10^3 \, M$ at equilibrium, calculate the amount, in $M \, mol$, of N_2 which must be present in the vessel when the rates of the forward and reverse reactions are equal. (3 marks)

Question 3 (5 marks)

The following reversible reaction is being investigated in a laboratory:

$$2P(g) + 5Cl_2(g) \approx 2PCl_5(g)$$
 $K_c = 118.7 M^{-5} \text{ at } 100^{\circ}\text{C}$

The reaction was initiated by mixing $2.32 \ mol$ of phosphorus with $5.27 \ mol$ of chlorine in a sealed, $5.00 \ L$ evacuated vessel at 100 °C. 10 minutes into the reaction, it is observed that the concentration of PCl₅ is $0.333 \ M$.

_						
_						
_						
_						
	tate whether the system is at equilibri		nutes into the read	ction or not. If no	ot, explain how t	he react
	vill progress towards equilibrium. (1 r	nark)				
W						
W						
W						
_						

had on the equilibrium constant. (1 mark)

Section B: Extension (5 Marks)

Question 4 (5 marks)
Anika is investigating the production of hydrogen iodide via the reversible reaction between gaseous iodine and hydrogen in a closed vessel of volume V litres, according to the following equation:
$I_2(g) + H_2(g) \rightleftharpoons 2HI(g)$ The K_c value for this reaction is 26.9 at 300°C.
a. Given that Anika placed 3.20 <i>mol</i> of both H ₂ (g) and I ₂ (g) into the empty container at 300°C, calculate the amount of HI, in <i>mol</i> , that would have been present at equilibrium. (4 marks)

VCE Chemistry ¾ Questions? Message +61 440 137 304

	n
b.	Anika decides to conduct the same experiment at a slightly cooler temperature to ensure her safety and calculates the system's reaction quotient (Q_c) after 5 minutes, obtaining a value of 26.9. Explain what Anika may conclude about the position of equilibrium in this instance. (1 mark)
Sp	pace for Personal Notes

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Chemistry ¾

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-chemistry-consult- 2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 137 304</u> with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

