

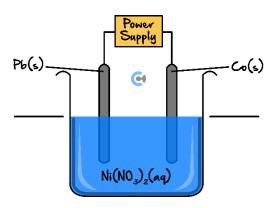
Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Chemistry ¾ Electroplating [2.4]

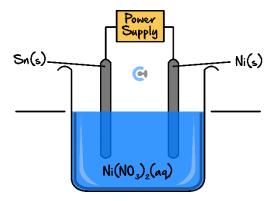
Homework

Admin Info & Homework Outline:

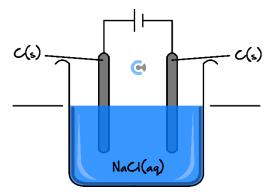
Student Name	
Questions You Need Help For	
Compulsory Questions	Pg 2 – Pg 19
Supplementary Questions	Pg 20 — Pg 28


Section A: Compulsory Questions (81 Marks)

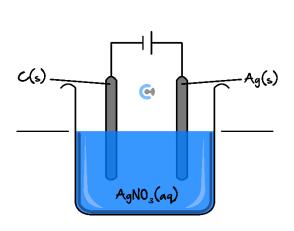
Sub-Section [2.4.1]: Identify The Electroplating Setup (Location of Object) & Find The Electroplating Reactions


Question 1 (4 marks)

Identify the anode and the cathode in each of these cells.

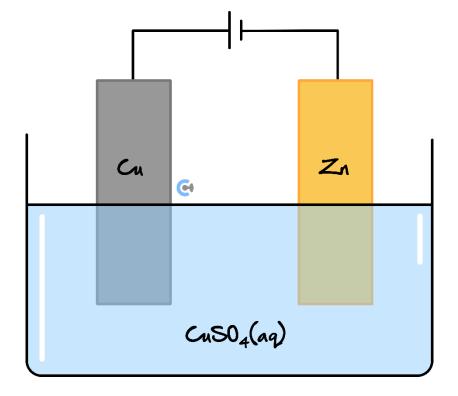

a. (1 mark)

b. (1 mark)



c. (1 mark)

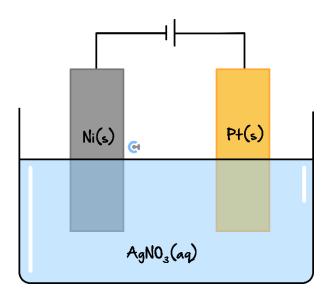
d. (1 mark)



Question 2 (6 marks)

For each of the following, write the balanced half-equation at each electrode, and the overall balanced equation.

a. (2 marks)

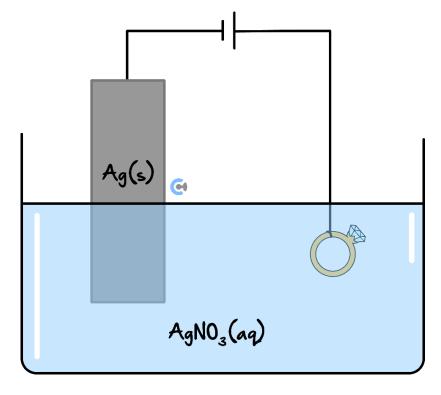

Anode: _____

Cathode:

Overall:

b. (2 marks)

Anode:


Cathode:

Question 3 (7 marks)

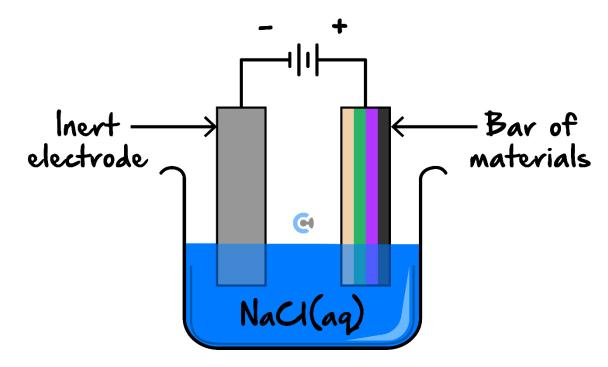
Robert is a novice jeweller who wishes to electroplate a copper ring with silver. He sets up an electroplating apparatus as shown.

a. A fellow jeweller, Simon, points out that there is a mistake in Robert's setup. Identify the mistake Robert has made and propose a solution. (2 marks)

b. Robert fixes his mistake and turns the power supply on. A thin layer of silver is electroplated onto the ring. Write the balanced half-equations for the reactions occurring at the anode and the cathode. (2 marks)

Anode: _____

c.	Robert turns the power supply in his apparatus off and removes the ring. He then replaces the electrolyte for the next experiment. Simon argues that Robert should not have done this because the concentration of the electrolyte has decreased.
	Evaluate Simon's statement and determine whether he is correct. (3 marks)
ς,	page for Dergonal Notes
 ɔt	pace for Personal Notes



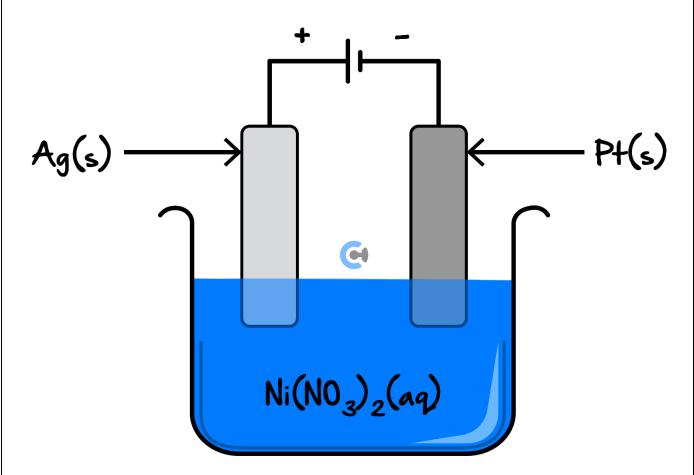
Sub-Section [2.4.2]: Find Next Order Reactions During Electrolysis

Question 4 (3 marks)

A bar consisting of four materials is attached to the positive terminal of a power supply. An inert electrode is attached to the negative terminal. Both the electrode and the bar are submerged in a saltwater solution as shown below.

In each scenario, the materials in the bar are given. Circle the material that is first to react.

- **a.** Lead, cobalt, nickel, tin. (0.5 marks)
- **b.** Nickel, copper, zinc, manganese. (0.5 marks)
- **c.** Silver, calcium, lead, iodine. (0.5 marks)
- **d.** Copper, potassium, sodium, silver. (0.5 marks)
- **e.** Copper, aluminium, magnesium, tin. (0.5 marks)
- **f.** Iron, lead, silver, copper. (0.5 marks)



Question 5 (4 marks)

The electroplating setups below will operate continuously. For each setup, write the balanced half-equations for **all** reactions that will occur at the anode and cathode after some time elapsed, in the order they take place.

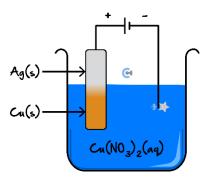
a.

i.	Anode:			

ii.	Cathode:					

b. Co(NO3)2(aq) i. Anode:

Space for Personal Notes

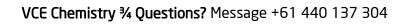

ii. Cathode:

Question 6 (8 marks)

Robert the jeweller is working on a pair of earrings and needs to electroplate the core platinum structures with a layer of silver. He sets up his electroplating apparatus once more as shown below. This setup involves a special electrode that allows Robert to first electroplate the earring with copper to further strengthen the platinum structure, then add a layer of silver for cosmetics.

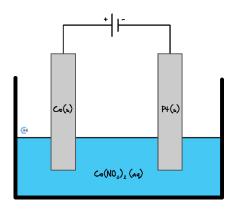
a.	Explain why the copper is electroplated onto the earring before the silver. (2 marks)
b.	Write the half-equation for the reaction occurring at the anode while the silver is being electroplated onto the earring. (1 mark)
	bert finishes plating one of the earrings. When he is setting up to plate the second earring, Robert accidentally erts the special electrode upside-down; that is the silver portion is on the bottom.
c.	Write the overall equation for the reaction that occurs initially for this earring. (1 mark)
d.	Write the overall equation for the reaction that occurs once the copper in the special electrode has all been oxidised. (1 mark)

VCE Chemistry ¾ Questions? Message +61 440 137 304


e.	Describe and explain what occurs when all of the copper in the special electrode has been oxidised. (3 mark	cs)
		/
ς,	ace for Personal Notes	
٦þ	uce for a crossial Motes	

<u>Sub-Section [2.4.3]</u>: Apply Faraday's Laws To Electroplating Calculations

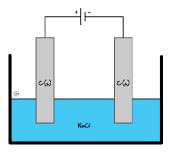
Qu	esti	on 7 (10 marks)
a.	Fin	d the moles of electrons required to:
	i.	Electroplate a ring with 2.0 mol of silver. (1 mark)
	ii.	Electroplate a circuit board with 4.0 mol of copper. (1 mark)
	iii.	Electroplate a necklace with $10.00 g$ of nickel. (2 marks)
	iv.	Electroplate a nail with 5.00 g of zinc. (2 marks)



b. 2.0	O mol of electrons are passed through some electrolytic setups:
i.	Find the current which passes through an electroplating cell with silver attached to the positive terminal, and platinum to the negative terminal if the cell runs for 3.00 <i>h</i> . (2 marks)
ii.	An electroplating cell is set up with inert electrodes and a potassium chloride electrolyte at 1.0 M concentration. Find the volume of O_2 evolved at the anode at SLC. (2 marks)
Space	e for Personal Notes

Question 8 (14 marks)

a. The following electroplating apparatus has been running for 1.00 h. The current through the apparatus is 5.00 A.

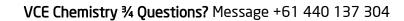

i.	Find the mass o	f cobalt, in grams,	, which has bee	en oxidised at t	he anode. (3 marks)

ii. Find the mass of cobalt has been reduced at the cathode. (2 marks)

iii. Has the concentration of Co(NO₃)₂ changed? Explain your answer. (2 marks)

CONTOUREDUCATION

b. Another electrolytic cell has been left running for 9.00 days at SLC. The current through this cell is a constant 10.00 *A*.

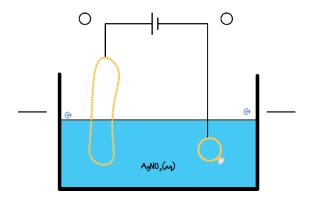

i. Find the volume of H_2 produced by this cell. (3 marks)

ii. Find the volume of O_2 produced by this cell. (2 marks)

iii. Explain the relationship between the volume of H_2 produced and O_2 produced. Use any relevant equation to justify your answer. (2 marks)

Qu	esti	on 9 (10 marks)				
a.	a. An electroplating apparatus is set up using a platinum electrode connected to the positive terminal, a condisc connected to the negative terminal to be electroplated and a 250 mL solution of 1.0 M AgNO ₃ . The current through the setup is 5.00 A.					
	i.	State the amount of Ag ⁺ ions, in moles, present in the solution. (1 mark)				
	ii.	How long, to the nearest minute, would it take to reduce the concentration of the AgNO ₃ solution to 0 <i>M</i> ? (2 marks)				

i.	Write the balanced equation for the overall reaction. (2 marks)
-•	are commissed equation for the overall feature of the first feature of the
ii.	Find the time, in minutes, required to oxidise $3.00 g$ of silver. (2 marks)
	(,, q (,
iii.	Find the mass of zinc plated on the iron nail after $3.00 g$ of silver has been oxidised. (3 marks)



Question 10 (15 marks)

Max the jeweller needs to electroplate a platinum ring with a protective layer of silver. Max uses 500 mL of a $2.00 M \text{ AgNO}_3$ electroplating solution.

A platinum electrode is used and attached to the positive terminal, whereby 7.00 A of current will run through the setup when the power supply is turned on. The electroplating apparatus Max uses is represented below.

- Label each electrode as positive or negative in the circles provided on the diagram. (1 mark)
- **b.** Label the anode and the cathode on the diagram above. (1 mark)
- Write the half-equations for the reactions that will initially occur at the anode and the cathode. (2 marks)

Max turns on his electroplating apparatus and takes a nap.

d. Find the time, in hours, that the silver be reduced onto the ring. (4 marks)

VCE Chemistry 3/4 Questions? Message +61 440 137 304

e.	Write the half-equations for the reactions that occur at the anode and the cathode once the Ag ⁺ ions in the solution have all been reduced onto the ring. (2 marks)
	Anode:
	Cathode:
f.	Identify and explain one safety concern in this setup. (1 mark)
The	e volume of hydrogen gas in the room should not exceed $10 L$.
g.	Find the maximum length of time, in hours, for which Max can sleep before he should turn his electroplating apparatus off. (4 marks)
Sp	ace for Personal Notes

Section B: Supplementary Questions (37 Marks)

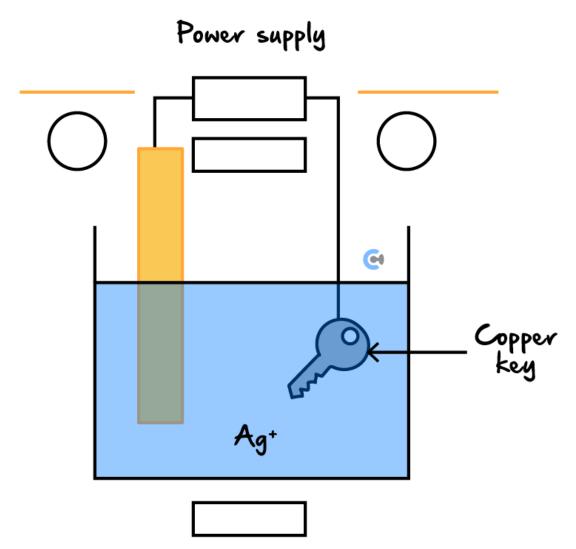
Sub-Section [2.4.1]: Identify The Electroplating Setup (Location of Object) & Find The Electroplating Reactions

Question 11 (1 mark)

When electroplating a metallic key with Cu metal:

- **A.** The key must be connected to the negative terminal of the power supply.
- **B.** The electrolyte can be a solution of CuSO₄.
- C. The anode can be made from Cu metal.
- **D.** All of the above.

Question 12 (1 mark)


A student wanted to cover an iron key with copper metal. Which of the following experimental set-ups is **incorrect**?

- **A.** The student connected the key to the negative terminal of a power supply.
- **B.** The student used copper (II) sulphate solution as the electrolyte.
- C. The student used an iron rod as the cathode.
- **D.** The student connected an iron rod to the positive terminal of a power supply.

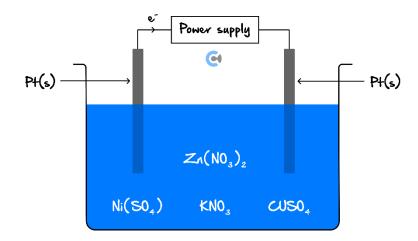
Question 13 (10 marks)

The following electroplating apparatus has been set up by a student. A 1.2 M solution of AgNO₃ was used as an electrolyte.

- a. Label the following on the diagram.
 - i. The cathode and anode on the **orange** lines. (1 mark)
 - ii. The charges of the cathode and anode in the circles. (1 mark)
 - iii. An arrow showing the direction of the flow of electrons in the purple box. (1 mark)
 - iv. An arrow showing the direction of Ag⁺ ions in the blue box. (1 mark)
- **b.** Determine the oxidation and reduction half-reactions for this cell. (1 mark)

VCE Chemistry ¾ Questions? Message +61 440 137 304

c.	The student runs the electroplating apparatus for 30 minutes and makes several observations.	
	The key increases in mass.	
	There are bubbles produced at the silver electrode once 15 minutes have passed.	
	The silver electrode increases in mass.	
	Evaluate these observations. If the observation is impossible, explain why. (5 marks)	
Sp	ace for Personal Notes	



Sub-Section [2.4.2]: Find Next Order Reactions During Electrolysis

Question 14 (8 marks)

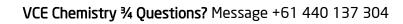
Ziggy sets up an electrolytic cell containing two platinum electrodes with 0.1 M of CuSO₄(aq), NiSO₄(aq), $Zn(NO_3)_2(aq)$ and $KNO_3(aq)$ as shown in the diagram below.

a. State and explain what metal will accumulate on the cathode immediately when the power supply is turned on. (2 marks)

b. Ziggy notes that after 5 minutes, the solution which was initially blue has turned transparent.

i. Explain this observation. (1 mark)

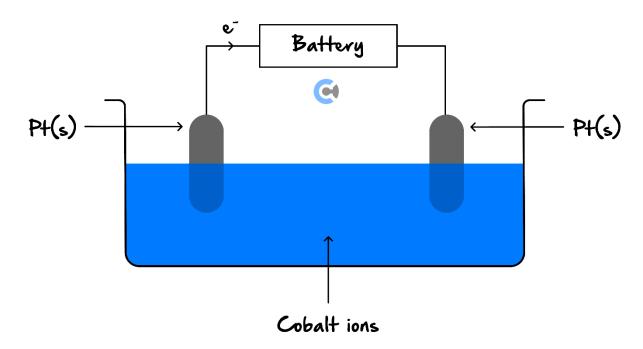
ii. At this point, explain which metal is being electroplated at the cathode. (2 marks)


c.	After 30 minutes of the cell running, Ziggy notices bubbling occurring at the cathode. His friend, Gain, claims that "the bubbling is due to impurity metal ions in the solution reacting with water." Evaluate Gain's statement and explain the reason for the bubbling. (3 marks)
δp	pace for Personal Notes

<u>Sub-Section [2.4.3]</u>: Apply Faraday's Laws To Electroplating Calculations

Question 15 (4 marks)			
Aanya sets up an electrolytic cell and leaves it running for a period of time.			
a.	The cell is running for 30 minutes with 4.00 A of current running through the cell. Calculate the electrical charge running through the cell. (2 marks)		
b.	Aanya decides to decrease the time that the cell runs to 10 minutes and finds that 900 <i>C</i> of electrical charge runs through the cell. Calculate the current running through the cell. (2 marks)		
Sı	pace for Personal Notes		

)u	estion 16 (5 marks)
•	Daniel passes 2.450 <i>mol</i> electrons through a cell. Calculate the amount of electrical charge which passes through. (2 marks)
	In another experiment, Daniel runs the cell for 45 minutes, at 4.20 A. Calculate the number of electron moles
	running through the cell. (3 marks)
p	ace for Personal Notes



Qu	Question 17 (5 marks)				
	An electrolytic cell was set up using an unknown, molten metal salt, MBr_3 . A current of 1.25 A was passed through the molten compound for 50.0 minutes to deposit 0.675 g of the metal.				
a.	Write a balanced half-equation for the anode and cathode reactions in this electrolytic cell. (2 marks)				
b.	Calculate the charge passed through the cell. (1 mark)				
c.	Calculate the moles of metal deposited. (2 marks)				
d.	Identify the metal deposited. (2 marks)				

Question 18 (3 marks)

Kynan sets up a cell shown below.

Kynan runs the cell for 20.0 minutes with 5.50 A running through the cell and finds that 2.0 g of metal has been deposited on the cathode.

Find the charge of the cobalt cation.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Chemistry ¾

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After-school weekdays and all-day weekends.

-on- Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-chemistry-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next.). 	 Message +61 440 137 304 with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

