

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Chemistry ¾
Fuel Cells [1.9]
Test

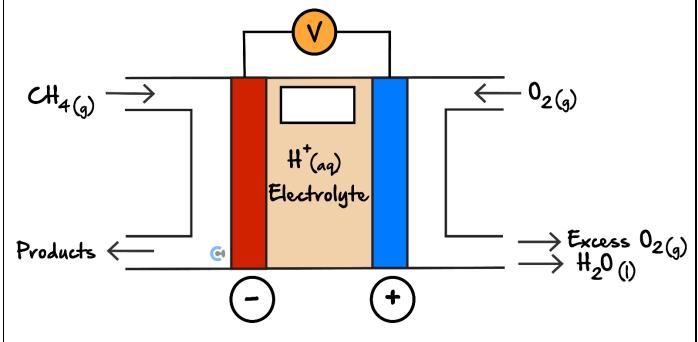
20 Marks. 1 Minute Reading. 16 Minutes Writing

Results:

Test Questions	/ 15	
Extension	/5	

Section A: Test Questions (15 Marks)

Ou	estion	1	(3	marks))


Tick whether the following statements are **true** or **false**.

		True	False
a.	In a fuel cell, the reactants are already stored and are therefore finite.		
b.	The fuel being consumed reacts at the anode in a fuel cell.		
c.	The electrolyte is shared between both half-cells in a fuel cell.		
d.	In fuel cells there are several energy conversions which take place, hindering their energy efficiency.		
e.	In a fuel cell, the electrodes are porous, and because of these holes, the electrodes are not very electrically conductive.		
f.	The type of electrolyte used influences the half-equations but has no impact on the overall equation occurring in a fuel cell.		

Question 2 (7 marks)

Below is a typical fuel cell used to generate electricity:

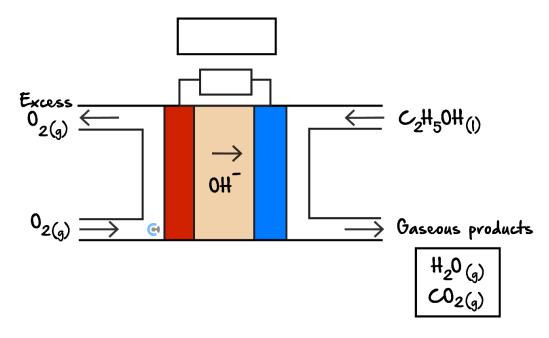
a. Draw an arrow in the box in the electrolyte to show the direction in which the $H^+(aq)$ ions will migrate. (1 mark)

b.

i. Write the overall equation occurring. (1 mark)

ii. Write the oxidation half-equation. (1 mark)

c. If the voltmeter in this cell reads a potential difference of 1.49 V at standard conditions and 1 M concentration for the electrolyte, calculate the E° of the oxidation reaction. (1 mark)


VCE Chemistry ¾ Questions? Message +61 440 137 304

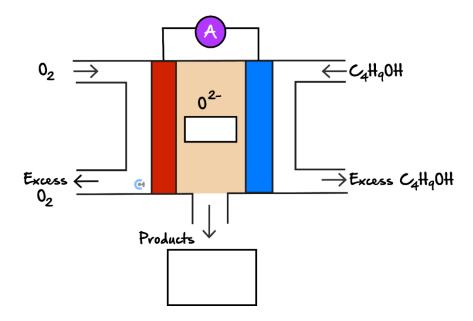
d.	This fuel cell is sometimes referred to as a proton exchange membrane fuel cell (PEMFC). Explain why it can be classified as such and outline the role protons play in this fuel cell. (2 marks)
e.	Fuel cells such as this one have not yet entirely replaced coal-fired power stations to generate electricity. Suggest one reason as to why this is the case. Justify your answer. (1 mark)
Sp	pace for Personal Notes

Question 3 (5 marks)

An ethanol fuel cell with an alkaline electrolyte is depicted below:

- **a.** In the box above the fuel cell, draw an arrow to represent the direction of electron flow through the circuit. (1 mark)
- **b.** Write the balanced half-equation occurring at the electrode where the electrolyte is a reactant. (2 marks)

c. Name and explain one property the electrodes in this fuel cell must possess. (1 mark)


d. State two types of energy produced as this fuel cell operates. (1 mark)

Section B: Extension (5 Marks)

Question 4 (5 marks)

Some fuel cells operate at very high temperatures and, as such, make use of molten electrolytes. One such cell used is shown below, which makes use of a solid oxide electrolyte:

- **a.** In the box provided within the electrolyte, draw an arrow to depict the direction of oxide movement. (1 mark)
- **b.** Write the half-equation occurring at the electrode to which electrons are being transferred. (1 mark)
- **c.** In the box provided below the diagram, write the products which will evolve as a result of the **overall** reaction occurring in the cell. Include states. (1 mark)
- **d.** Write the half-equation occurring at the negative electrode. (1 mark)
- **e.** If the relevant half-equations were provided in the electrochemical series, would it be feasible to calculate the EMF generated by this cell? Justify your answer. (1 mark)

Website; contoureducation.com.au | Phone; 1800 888 300 | Email; hello@contoureducation.com.au

VCE Chemistry ¾

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-chemistry-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 137 304</u> with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

