

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Chemistry ¾ Spontaneous Redox Reactions [1.7]

Homework

Homework Outline:

Compulsory Questions	Pg 02 - Pg 15	
Supplementary Questions	Pg 16 - Pg 26	

Section A: Compulsory Questions (42 Marks)

<u>Sub-Section [1.7.1]</u>: Apply the ECS to Predict Spontaneous Reactions

Question 1 (3 marks)						
Write the (i) oxidation and (ii) half equations for each of the following spontaneous reactions.						
a. John reacts zinc metal (Zn) with copper (II) sulphate (CuSO ₄) in aqueous solution.						
i. Oxidation half equation. (0.5 marks)						
ii. Reduction half equation. (0.5 marks)						
b. Maggie reacts copper metal (Cu) with silver nitrate (AgNO ₃) in aqueous solution.						
i. Oxidation half equation. (0.5 marks)						
ii. Reduction half equation. (0.5 marks)						
 c. Ivy reacts nickel sulphate (NiSO₄) with hydrogen gas (H₂). i. Oxidation half equation. (0.5 marks) 						
ii. Reduction half equation. (0.5 marks)						

Quest	Question 2 (3 marks)						
Write	Write the (i) oxidation and (ii) half equations for each of the following spontaneous reactions.						
a. Es	other reacts tin (II) sulphate (SnSO ₄) with iron (III) phosphate (FePO ₄) in an aqueous solution.						
i.	Oxidation half equation. (0.5 marks)						
ii.	Reduction half equation. (0.5 marks)						
b. A	ngel reacts hydrogen peroxide (H_2O_2) with iodide ions (KI) in an aqueous solution. Oxidation half equation. (0.5 marks)						
ii.	Reduction half equation. (0.5 marks)						
c. Cl	herry reacts hydrogen gas (H_2) with tin (II) sulphate $(SnSO_4)$ in an aqueous environment. Oxidation half equation. (0.5 marks)						
ii.	Reduction half equation. (0.5 marks)						

Question 3 (6 marks)

Write the (i) oxidation and (ii) half equations for each of the following spontaneous reactions. **a.** Ethan reacts a solution of potassium permanganate (KMnO₄), iron (II) sulphate (FeSO₄), and hydrogen peroxide (H₂O₂) in aqueous medium. Oxidation half equation. (1 mark) ii. Reduction half equation. (1 mark) **b.** Olivia reacts tin (II) chloride (SnCl₂) with a mixture of iron (III) nitrate (Fe(NO_3)₃) and copper (II) iodide (CuI₂) in an aqueous solution. i. Oxidation half equation. (1 mark) ii. Reduction half equation. (1 mark)

VCE Chemistry ¾ Questions? Message +61 440 137 304

c.	Luc in s	cas reacts copper (II) nitrate $(Cu(NO_3)_2)$ with zinc (Zn) , silver nitrate $(AgNO_3)$, and hydrochloric acid (H solution.	Cl)
	i.	Oxidation half equation. (1 mark)	
	ii.	Reduction half equation. (1 mark)	
Spa	ace	for Personal Notes	

<u>Sub-Section [1.7.2]</u>: Identify Differences Between Direct & Indirect Redox Reactions, & Features of ECS

Question 4 (3 marks)					
Michelle adds hydrogen peroxide (H_2O_2) into water (H_2O) . She observes no physical signs of a chemical reaction occurring.					
a. Predict two physical indicators that Michelle may be looking for to suggest that a reaction is occurring. (2 marks)					
b. Justify why no chemical reaction is occurring. (1 mark)					
Space for Personal Notes					

Question 5 (2 marks)
Melody adds a strip of lead (Pb) to a beaker containing a 1.0 M aqueous solution of silver sulphate (Ag ₂ SO ₄).
a. Predict the half-reactions occurring in the beaker.
i. Oxidation reaction. (0.5 marks)
ii Padvation reaction (0.5 marks)
ii. Reduction reaction. (0.5 marks)
b. State the type of energy conversion occurring in this chemical reaction. (1 mark)
Question 6 (2 marks)
State the primary difference between direct contact and indirect contact spontaneous redox reactions.
Space for Personal Notes

<u>Sub-Section [1.7.3]</u>: Find the Strongest Oxidants/Reductants by Constructing Your Own ECS

Question 7 (4 marks)

a. Three unknown substances P, Q, and R are present. The half equations are provided without E° values.

Reaction
$P^{2+}(aq) + 2e^- \rightleftharpoons P(s)$
$Q^{2+}(aq) + 2e^- \rightleftharpoons Q(s)$

 $R^{2+}(aq) + 2e^- \rightleftharpoons R(s)$

The following facts are known:

- \bullet When P reacts with a solution of R^{2+} , a reaction occurs.
- \bullet When Q interacts with a solution of P^{2+} , the beaker containing the solution becomes warmer.

Rank the three metals in decreasing oxidant strength. (2 marks)

b.	Three unknown subs	stances X. Y. and	Z are present.	The half equation	s are provided	without E° values.
~•	Timee amano win back	starroos ri, r, arra	are present.	THE HALL EQUALION	is are provided	William D values.

$$X^{2+}(aq) + 2e^- \rightarrow X(s)$$

$$Y^{2+}(aq) + 2e^- \rightarrow Y(s)$$

$$Z^{2+}(aq) + 2e^{-} \rightarrow Z(g)$$

The following observations are recorded:

- \bullet When Z^{2+} is added to Y, no bubbles are produced.
- \bullet When Z^{2+} is added to X, the beaker containing the solutions becomes warmer.

Rank the substances in increasing reductant strength. (2 marks)

Space	for	Persona	l Notes

Question 8 (2 marks)

a. Four unknown substances A, B, C, and D are present. The half-equations are provided without E° values.

$$A^{2+}(aq) + 2e^{-} \rightarrow A(s)$$

$$B^+(aq) + e^- \rightarrow B(s)$$

$$C^{3+}(aq) + 3e^{-} \rightarrow C(g)$$

$$D^+(aq) + e^- \rightarrow D(l)$$

The following observations are recorded:

- When C³⁺ is added to A, the reaction mixture fizzes (produces gas bubbles).
- \bigcirc When D⁺ is added to A²⁺, no reaction occurs.
- When C³⁺ is added to B, the solution releases heat.

Rank the four substances in decreasing oxidant strength. (2 marks)

b. Four unknown substances A, B, C, and D are present. The half-equations are provided without E° values.

$$A^{2+}(aq) + 2e^{-} \rightarrow A(s)$$

$$B^+(aq) + e^- \rightarrow B(s)$$

$$C^{3+}(aq) + 3e^- \rightarrow C(s)$$

$$D^+(aq) + e^- \rightarrow D(g)$$

The following observations are recorded:

- \bullet When B⁺ is added to A²⁺, no reaction occurs.
- When C³⁺ is added to A, the temperature of the beaker increases.
- When D⁺ is added to B, gas bubbles are observed.

Rank the four substances in increasing reductant strength. (2 marks)

Space	for	Persona	l Notes

Question 9 (6 marks)

a. A scientist is given five metals and 1 M solution of nitrates of the metals.

The metals are labelled M, N, O, P and Q and the solutions are labelled M^{2+} , N^{2+} , O^{2+} , P^{2+} , and O^{2+} .

The student carries out a number of experiments and the results obtained are listed below:

- i. Metal O began to be coated in different metals when placed in solutions of M^2 , N^{2+} , and P^{2+} but not Q^{2+} .
- ii. A solution of P²⁺ underwent a reaction when metal M was dipped in it.
- iii. Metal N is known to be the weakest reductant.

Rank each of the 5 metals in order of decreasing E° values. (3 marks)

CONTOUREDUCATION

b.	A scientist is given five metals and 1 <i>M</i> solution of nitrates of the metals.		
	The metals are labelled M, N, O, P, and Q and the solutions are labelled M^{2+} , N^{2+} , O^{2+} , P^{2+} , and Q^{2+} .		
	The student carries out a number of experiments and the results obtained are listed below:		
	i. When metal Q is dipped in all solutions, it reacts vigorously with all of them.		
	ii. When a metal rod of N is dipped in all solutions, it only begins to degrade in M^{2+} and O^{2+} solutions.		
	iii. M ²⁺ reacts vigorously when reacted with metal 0.		
	Rank each of the 5 metals in order of decreasing E° values. (3 marks)		
	··		
Sp	ace for Personal Notes		

Sub-Section: The 'Final Boss'

Question 10 (9 marks)

Ivy is investigating the following reactions shown below.

1.
$$ClO_2^-(aq) + 2H^+(aq) + e^- \rightarrow ClO(g) + H_2O(l)$$

2.
$$\operatorname{Sn}^{4+}(aq) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(aq)$$

3.
$$BrO_3^-(aq) + 6H^+(aq) + 6e^- \rightarrow Br_2(l) + 3H_2O(l)$$

4.
$$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO_2(g) + 2H_2O(l)$$

She notes down the following observations:

- \bullet When BrO₃ is mixed with ClO(g), a reaction occurs, and bubbles are produced.
- \bullet When ClO_2^- is added to Sn^{2+} , no observable reaction occurs.
- Br₂ reacts with NO₂, releasing a small amount of heat.
- **a.** Rank the 4 substances in increasing oxidant strength. (2 marks)

b. Using **part a.**, predict whether a reaction will occur when $BrO_3^-(aq)$ is mixed with $Sn^{2+}(aq)$. Justify your answer. (2 marks)

VCE Chemistry 3/4 Questions? Message +61 440 137 304

c.	Exp	plain why no observable reaction takes place when $ClO_2^-(aq)$ is mixed with $NO_2(g)$. (2 marks)	
d.	All	the oxidants and reductants from the above reactions are added to a reaction vessel.	
	i.	Write the overall equation for the reaction occurring immediately, as soon as the reagents are added to the vessel. (2 marks)	he
			
	ii.	State the energy conversions occurring during this reaction. (1 mark)	
Sp	ace	for Personal Notes	

Section B: Supplementary Questions (34 Marks)

<u>Sub-Section [1.7.1]</u>: Apply the ECS to Predict Spontaneous Reactions

Ques	Question 11 (3 marks)		
Write	Write the (i) oxidation and (ii) half equations for each of the following spontaneous reactions.		
a. S	rah reacts magnesium metal (Mg) with hydrochloric acid (HCl) in an aqueous solution.		
i.	Oxidation half equation. (0.5 marks)		
ii	Reduction half equation. (0.5 marks)		
	iam reacts aluminium metal (Al) with iron (III) chloride (FeCl ₃) in aqueous solution.		
i.	Oxidation half equation. (0.5 marks)		
ii	Reduction half equation. (0.5 marks)		
c. E	mma reacts lead (II) nitrate $(Pb(NO_3)_2)$ with solid zinc (Zn). Oxidation half equation. (0.5 marks)		
ii	Reduction half equation. (0.5 marks)		

Qu	Question 12 (3 marks)		
Wr	Write the (i) oxidation and (ii) half equations for each of the following spontaneous reactions.		
a.	Rel	becca reacts tin (II) chloride ($SnCl_2$) with iron (III) nitrate ($Fe(NO_3)_3$) in an aqueous solution.	
	i.	Oxidation half equation. (0.5 marks)	
	ii.	Reduction half equation. (0.5 marks)	
b.	Ke ^v	vin reacts hydrogen peroxide (H_2O_2) with permanganate ions (MnO_4^-) in an aqueous solution. Oxidation half equation. (0.5 marks)	
	ii.	Reduction Half equation. (0.5 marks)	
c.	Chl	loe reacts hydrogen gas (H_2) with tin (II) nitrate $(Sn(NO_3)_2)$ in an aqueous environment. Oxidation half equation. (0.5 marks)	
	ii.	Reduction half equation. (0.5 marks)	

Question 13 (4 marks)		
Write the (i) oxidation and (ii) half equations for each of the following spontaneous reactions.		
a. Sophia adds tin (II) chloride (SnCl ₂) to a solution containing potassium dichromate ($K_2Cr_2O_7$) and hydrogen peroxide (H_2O_2) in aqueous conditions.		
i. Oxidation half equation. (1 mark)		
ii. Reduction half equation. (1 mark)		
 b. Angela adds iron (III) chloride (FeCl₃), hydrogen peroxide (H₂O₂), and sulphuric acid (H₂SO₄) in aqueous medium. 		
i. Oxidation half equation. (1 mark)		
ii. Reduction half equation. (1 mark)		

Question 14 (2 marks)

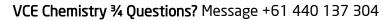
Vivek is given the following electrochemical series for some reactions that are not occurring at SLC.

$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2\operatorname{e}^{-} \rightleftharpoons \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.1
$Cu^{2+}(aq) + 2e^- \rightleftharpoons Cu(s)$	+0.25
$I_2(s) + 2e^- \rightleftharpoons 2I^-(aq)$	+0.69
$\operatorname{Zn^{2+}}(\operatorname{aq}) + 2\operatorname{e}^{-} \rightleftharpoons \operatorname{Zn}(\operatorname{s})$	-0.90

Vivek adds copper (II), iodide and tin (IV) ions to a beaker. Following this, he adds a strip of zinc metal.

Predict the half equations of the reaction occurring.

- **a.** Oxidation reaction. (1 mark)
- **b.** Reduction reaction. (1 mark)



<u>Sub-Section [1.7.2]</u>: Identify Differences Between Direct & Indirect Redox Reactions, & Features of ECS

Qu	Question 15 (4 marks)		
Be	Betty is analysing a reaction between oxygen gas (0_2) and iron metal (Fe).		
a.	State and justify using chemical equations whether the reaction is spontaneous. (2 marks)		
b.	When Betty sets up this reaction in the laboratory, she notices no reaction occurring. Provide a justification for this observation. (1 mark)		
c.	Provide a physical application of this chemical reaction. (1 mark)		
Sp	ace for Personal Notes		

Question 16 (2 marks)		
Precious adds a strip of magnesium (Mg) to a beaker containing a 1.0 M aqueous solution of aluminium phosphate (AlPO ₄).		
a. Predict the half-reactions occurring in the beaker.		
i. Oxidation reaction. (0.5 marks)		
ii. Reduction reaction. (0.5 marks)		
b. State the type of energy conversion occurring in this chemical reaction. (1 mark)		
Question 17 (2 marks) State the role of the Standard Hydrogen Electrode (SHE) in the electrochemical series.		
Space for Personal Notes		

Space for Personal Notes	را
	-
	-
	-
	-
Space for Personal Notes	-
Space for Personal Notes	-
Space for Personal Notes	

<u>Sub-Section [1.7.3]</u>: Find the Strongest Oxidants/Reductants by Constructing Your Own ECS

Question 19 (4 marks)

a. There are three unknown substances J, K, and L. The following half-equations are given, but their E° values are not given.

<u>Reaction</u>
$J^{2+}(aq) + 2e^- \rightarrow J(s)$
$K^{2+}(aq) + 2e^- \to K(s)$
$L^{2+}(aq) + 2e^- \rightarrow L(s)$

It is known that when J is mixed into a solution of L^{2+} , a reaction begins to occur.

It is also known that when K is mixed into a solution of L^{2+} , no reaction occurs.

Rank the three metals in terms of their decreasing oxidant strength. (2 marks)

b. There are three unknown substances A, B, and C. The following half-equations are given, but their E° values are not given.

Reaction

$$A^{2+}(aq) + 2e^- \rightarrow A(s)$$

$$B^{2+}(aq) + 2e^{-} \rightarrow B(s)$$

$$C^{2+}(aq) + 2e^- \rightarrow C(s)$$

- i. A plastic rod coated in metal A reacts vigorously with a solution of B(NO₃)₂ and CSO₄.
- ii. Metal C is able to react with B^{2+} but not with A^{2+} .

Rank the three metals in terms of their decreasing oxidant strength. (2 marks)

Question 20 (3 marks)

Four unknown substances P, Q, R, and S are present. The half-equations are provided without E° values.

$$P^{2+}(aq) + 2e^- \rightarrow P(s)$$

$$Q^+(aq) + e^- \rightarrow Q(g)$$

$$R^{3+}(aq) + 3e^{-} \rightarrow R(s)$$

$$S^+(aq) + e^- \rightarrow S(l)$$

The following observations are recorded:

- 1. When Q^+ is added to P^{2+} , no reaction occurs.
- 2. When R^{3+} is added to P, the beaker becomes warmer.
- **3.** When S⁺ is added to Q, gas bubbles are observed.

Rank the four substances in increasing reductant strength.

Question 21 (4 marks)

A scientist is given five metals and 1 *M* solutions of their nitrates.

The metals are labelled A, B, C, D, and E and the solutions are labelled A²⁺, B²⁺, C²⁺, D²⁺, and E²⁺.

The scientist carries out several experiments, and the results obtained are as follows:

- 1. When metal A is dipped into all solutions, it reacts vigorously with D^{2+} and E^{2+} , but no reaction occurs with B^{2+} or C^{2+} .
- 2. When metal D is dipped into all solutions, it reacts only with E^{2+} .
- 3. Metal C, when dipped into solutions, reacts with B^{2+} but not with A^{2+} .
- **4.** B^{2+} reacts with metal E, but no reaction occurs when B^{2+} is added to C.

a.	State the strongest oxidant and reductant. (2 marks)
b.	Rank the metals in terms of decreasing E° values. (2 marks)
	,
	,

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Chemistry ¾

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

<u>1-on-1 Video Consults</u>	<u>Text-Based Support</u>
 Book via bit.ly/contour-chemistry-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 137 304</u> with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

