CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Chemistry ¾ Introduction to Redox [1.6]

Workbook

Outline:

Introduction to Redox Reactions

Pg 2-3

Redox Reactions & Oxidation Numbers

Pg 4-24

- Oxidation and Reduction Reactions
- Calculating Oxidation Numbers
- Oxidants and Reductants
- Conjugate Redox Pairs

Balancing Redox Half Equations

Pg 25-40

- Balancing Equations in Acidic (H⁺) Environments
- Forming the Overall Equation
- Balancing Equations in Basic/Alkaline (OH⁻) Environments

Learning Objectives:

CH34 [1.6.1] - Apply oxidation numbers to find oxidant & reductant.

- A
- CH34 [1.6.2] Apply KOHES to write balanced half-equations and overall equations in acidic & basic conditions.

Section A: Introduction to Redox Reactions

Discussion: What are some examples of redox reactions?

What is a Redox Reaction?

Redox Reaction

Definition: A redox reaction involves the ________ of ______. 🕏

REDOX

1

Exploration: Redox Reaction

Basic redox reaction (combustion of methane):

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$$

'Half' reactions:

1. Oxidation:
$$CH_4(g) + 2H_2O(l) \rightarrow CO_2(g) + 8H^+(aq) + 8e^-$$

2. Reduction:
$$20_2(g) + 8H^+(aq) + 8e^- \rightarrow 4H_2O(l)$$

Electrons in the first oxidation reaction:

[lost] / [gained]

Electrons in the second reduction reaction: \(\begin{align*}
\begin{align*}
\b

[lost] / [gained]

What happens to the electrons from equation 1 to equation 2? <a> ______

<u>Discussion:</u> Can the oxygen (0_2) reaction occurs by itself without the methane (CH_4) reaction occurring?

[Yes] / [No]

<u>Discussion:</u> Can the methane (CH_4) reaction occurs by itself without the oxygen $(\mathbf{0}_2)$ reaction occurring?

[Yes] / [No]

Key Takeaways

- Market Redox reactions must occur in pairs.
- ☑ The two half-equations cannot occur by themselves and must occur together.
- Redox is the exchange of electrons one substance gives away electrons, and the other substance takes in electrons.

VCE Chemistry 3/4 Questions? Message +61 440 137 304

Section B: Redox Reactions & Oxidation Numbers

Sub-Section: Oxidation and Reduction Reactions

What do oxidation and reduction mean?

Oxidation and Reduction Reactions

- Oxidation reactions always result in the \$\bigs_____ of electrons.
- Reduction reactions always result in the _____ of electrons.

How do we remember this?

TIP:

OIL RIG

Why is this the case and what does it mean if something is oxidised?

Oxidation Number

- Definition: States the hypothetical 👺 ______ of an atom if the bonding is purely ionic.
- According to the **Octet Rule**, atoms generally want 💆 ______ electrons in its outer shell.

$\underline{\text{Exploration}}\text{: Sodium }(Na)$

Consider sodium (Na):

Na

Key Information:

Number of Protons	Number of Electrons	Overall Charge	Oxidation Number
2	2	2	2

► Electron Configuration: 🏖

What will the sodium (Na) do to obtain a full outer shell? \(\bar{z}\)

$\underline{\text{Exploration}}\text{: Sodium Ion }(\text{Na}^+)$

Sodium usually exists in the following form:

Na⁺

> Key Information:

Number of Protons	Number of Electrons	Overall Charge	Oxidation Number
2	2	2	2

Exploration: Overall Reaction

Complete the equation including electrons. (Label Below)

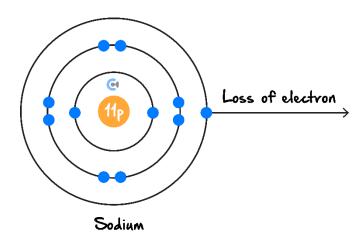
 $Na \rightarrow Na^+$

- ► Electrons: ³ [gained] / [lost]
- Reaction: ³ [reduction] / [oxidation]
- Oxidation Number:

<u>Before</u> : Na	<u>After:</u> Na ⁺
2	2

- Oxidation Number: 💆 [increases] / [decreases]
- Substance becomes: 5 [more] / [less] oxidised
- ➤ Electrons:[™] [gained] / [lost]
- ➤ Substance's Overall Charge: ³ [increases] / [decreases]

Misconception



"In the following reaction, electrons are produced, and thus, it is a reduction reaction as we gain electrons!"

$$Na \rightarrow Na^+ + e^-$$

TRUTH: Electrons are lost in this reaction!

Think about it from the point of view of the sodium itself:

What if we want to go the other way around?

Exploration: Opposite Reaction

▶ What if we want to go from a Na⁺ ion to Na? *(Label Below)*

$$Na^+ + e^- \rightarrow Na$$

Oxidation number: \(\begin{align*}
\begin{align*}
\begin{align*

- [increases] / [decreases] / [no change]
- What happens to the sodium compared to before? <a>\$\bar{z}
- [More] / [Less] oxidised

Type of Reaction: <a>\$\bar{z}\$

[reduction] / [oxidation]

Electrons: <a>\$\bar{z}\$

[gained] / [lost]

TIP: Think of oxidation numbers and tell us how oxidised the substance is. The higher the oxidation number, the more oxidised the substance is!

Reduction & Oxidation Reactions

Oxidation Reaction		Reduction Reaction
	Electrons are [Gained] / [Lost].	Electrons are [Gained] / [Lost].
	Oxidation Number [Increases] / [Decreases].	Oxidation Number [Increases] / [Decreases].

Extension: Which one is more likely to occur in nature? Na^+ reducing into Na or Na oxidising into Na^+ ? (Hint: Think back to the Octet Rule)

$$Na \rightarrow Na^+ + e^-$$

$$Na^+ + e^- \rightarrow Na$$

NOTE: We'll cover the 'likelihood' for certain reactions in the next booklet.

Question 1

Which of the following statements is true for an oxidation reaction?

- **A.** Electrons are gained by the species.
- **B.** Electrons are lost by the species.
- **C.** The oxidation state decreases.
- **D.** Electrons are written on the left side of the equation.

Question 2

Which of the following represents a reduction in half-reaction?

- **A.** Fe \to Fe³⁺ + 3e⁻
- **B.** $Cl_2 + 2e^- \rightarrow 2Cl^-$
- C. $Cu \to Cu^{2+} + 2e^{-}$
- **D.** Na \to Na⁺ + e⁻

Space for	Personal	Notes
-----------	----------	-------

Sub-Section: Calculating Oxidation Numbers

Context

When calculating oxidation numbers, there are a couple of **rules**.

Exploration: Oxidation Number of Elements

Rule #1: Free Elements

Oxidation Number: S

Na or F

Oxidation Number: 🏖

 Cl_2 or O_3

Rule #1: The oxidation number of any free element (exists by itself) is always

Rule #2: lons

Oxidation Number: 🍣

Na⁺ or F⁻

Rule #2: The oxidation number of any ion is just the 💆 _____ of the ion.

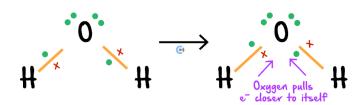
Rule #3: Ionic Compound

Oxidation Number:

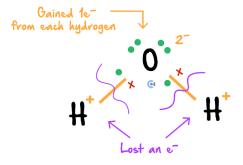
NaF

Rule #3: The oxidation number in 💆 _____ compounds is the same as the charge carried by the cation and anion respectively.

NOTE: This rule only works for **ionic bonding** it does not work for molecules which are **covalently bonded** to each other. Instead for covalent bonding, a different method must be used.



What about covalent molecules?


Exploration: Oxidation Number of Molecules

Consider water (H₂0):

Which is more electronegative?

- [Hydrogen] / [Oxygen] atoms
- Rule: When calculating oxidation numbers, visualise all bonds such as these covalent bonds as being ______ bonds!
- Find the **hypothetical charge** on each atom if it were to be an ionic bond.

Effective Charge on Hydrogen Atom (Oxidation Number)	Effective Charge on Oxygen Atom (Oxidation Number)

- **Each Hydrogen** is typically going to have an oxidation number of +1.
- **Oxygen** is typically going to have an oxidation number of -2.

Exploration: Hydrogen Oxidation Number

W	ith i	Non-l	Metals	s (Ma	giority

>	Oxidation number of hydrogen (H) when combined with a	non-metal:
>	Electronegativity of non-metals compared to hydrogen:	[stronger] / [weaker]
>	Electrons pull relative to hydrogen: 💆	Pulls [towards] / [away from] hydrogen
>	Oxidation Number: 🍣	
	HCl	

CH₄

Rule: The \$\bigs_____ of all the oxidation numbers in a neutral compound is \$\bigs_____.

With Metals (Minority)

- Oxidation number of hydrogen (H) when it is combined with a metal sis
- Electronegativity of non-metals compared to hydrogen: <a> [stronger] / [weaker]
- Electrons pull relative to hydrogen: Pulls [towards] / [away from] hydrogen
- Oxidation Number:

NaH or CaH₂

Oxidation Number Rules

- lsolated Elements (e.g., H₂): 🐉
- lons (e.g., Na+): \(\frac{2}{2}\)
- Ionic Compounds (e.g., NaCl):
- Oxygen (0): \(\bar{2}\)
- Hydrogen (H):
- Sum of oxidation numbers in the compound is equal to (e.g., H_2SO_4 or MnO_4): \cite{S}

C

Let's look at a question together!

Question 3 Walkthrough.		
Find the oxidation number of sulphur in sulphuric acid.		

Your Turn!

Question 4

Find the oxidation number for all elements in each of the following molecules.

a. H₂0

c. NaH

b. NH₃

d. H₂

Misconception

The oxidation number of H_2 is +1 or -1.

TRUTH:

Consider hydrogen gas (H₂):

- Which hydrogen is more electronegative? 💈
- What is the 'effective charge' of each of them? 🍣

NOTE: The one exception is when hydrogen exists as H_2 - oxidation number of hydrogen is just 0.

ALSO NOTE: The oxidation number of hydrogen is usually just +1.

Active Recall: What is the usual oxidation number of oxygen?

Exploration: Oxygen Oxidation Number

Oxidation Number: \$\overline{\Sigma}\$

$$NO_2$$
 or SO_3

The **sum** of oxidation numbers in a **polyatomic** ion is equal to its **charge**.

$${\rm CO_3}^{2-}$$
 or ${\rm Cr_2O_7}^{2-}$

NOTE: The oxidation number of oxygen is not -2 when the compound contains 0-0 bonds such as in: O_2 , O_3 , H_2O_2 , $O_2^{2^-}$ and so on, but this is also rarely tested in VCAA.

Let's look at a question together!

2)
Y

Δ.,	action	5	Walkthrough.
Ou	esuon	3	waikinrough.

Find the oxidation number of carbon in citrate.

Your Turn!

Question 6

State the oxidation number for the element specified in the molecule/ion provided.

a. Oxidation number of sulphur in sulphate.

c. Oxidation number of nitrogen in nitrate.

b. Oxidation number of phosphorous in phosphate.

d. Oxidation number of chromium in dichromate.

Question 7

Determine the oxidation number of chlorine in each of the following:

- a. HClO
- **b.** NaClO₄
- \mathbf{c} . ClO_3^-

Question 8 Additional Question.

Vanadium is an example of a transition metal that has more than one oxidation state.

The following ions or compounds containing vanadium are known to exist:

 $V_{2}O_{5}$

 $V0_2^+$

 $V0^{2+}$

 VCl_3

 VCl_2

The oxidation number of vanadium in the above compounds is:

A. -1 and -2.

B. +2 and +3 only.

 \mathbf{C} . +3 and +5 only.

D. +2, +3, +4 and +5.

Sub-Section: Oxidants and Reductants

<u>REMINDER</u>: Don't forget that <u>oxidation</u> is the <u>increase</u> in <u>oxidation number</u> (loss of electrons), and <u>reduction</u> is the <u>decrease</u> in <u>oxidation number</u> (gain of electrons).

Exploration: Oxidising Agents and Reducing Agents

- 1. Oxidation: $CH_4(g) + 2H_2O(l) \rightarrow CO_2(g) + 8H^+(aq) + 8e^-$
- 2. Reduction: $20_2(g) + 8H^+(aq) + 8e^- \rightarrow 4H_2O(l)$
- Oxidising agent (oxidant):
 - Purpose: 3
- Reducing agent (reductant):
 - Reducing agent, abbreviated to 'reductant', causes [reduction] / [oxidation] to the other species.

TIP: Just think of the oxidising agent/oxidant causing oxidation to the other species.

Oxidising Agents and Reducing Agents

- Oxidant: Causes oxidation to other species, itself undergoes reduction.
- **Reductant**: Causes reduction to other species, itself undergoes oxidation.

Try a Question!

Question 9 Walkthrough.

In the following reaction:

$$CuO(s) + H_2(g) \longrightarrow Cu(s) + H_2O(l)$$

a. Which species has been oxidised and which species has been reduced?

b. Identify the:

i. Oxidant.

ii. Reductant.

<u>Discussion:</u> The oxidation number of oxygen (0) does not change. Has the oxygen atom been oxidised or reduced?

Your Turn!

Question 10 (1 mark)

In the following reaction:

$$Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$$

a. Which species has been oxidised and which species has been reduced? (0.5 marks)

b. Identify the: (0.5 marks)

Oxidant: _____ Reductant: _____

Question 11 (1 mark)

In the reaction:

$$CuO(s) + Zn(s) \rightarrow ZnO(s) + Cu(s)$$

a. State which species has been oxidised. (0.5 marks)

b. State the oxidising agent. (0.5 marks)

Question 12 (1 mark)

In the reaction:

$$HOCl(aq) + H^{+}(aq) + 2I^{-}(aq) \rightarrow I_{2}(aq) + Cl^{-}(aq) + H_{2}O(l)$$

- **A.** Hydrogen is reduced and oxygen oxidised.
- **B.** Chlorine is reduced and iodine oxidised.
- **C.** Iodine is reduced and hydrogen oxidised.
- **D.** Chlorine is oxidised and oxygen reduced.

Question 13 (1 mark)

In which of the following reactions does the metal atom show the greatest change in oxidation state?

- **A.** MnO_4^- to Mn^{2+}
- **B.** MnO_2 to $Mn(OH)_3$
- \mathbf{C} . PbO₂ to PbSO₄
- **D.** VO_2^+ to VO^{2+}

Question 14 (1 mark)

Which one of the following is least likely to be a product of a redox reaction between sulphuric acid (H_2SO_4) and zinc metal (Zn)?

- **A.** H₂
- **B.** H₂S
- **C.** SO₂
- **D.** SO₃

Sub-Section: Conjugate Redox Pairs

Exploration: Conjugate Redox Pairs

Oxidant and Reductant in Equation: (Label Below)

$$CuO(s) \quad + \quad H_2(g) \quad \longrightarrow \quad Cu(s) \quad + \quad H_2O(l)$$

Oxidant and Reductant in <u>Flipped</u> Equation: (Label Below)

$$Cu(s) + H_2O(l) \longrightarrow CuO(s) + H_2(g)$$

Products:

$$CuO(s) \quad + \quad H_2(g) \quad \longrightarrow \quad Cu(s) \quad + \quad H_2O(l)$$

- Representation: Always shows the oxidising agent/oxidant first.
- Conjugate Redox Pairs for the above reaction:

Ouestion	15	Walkthrough.
Question	10	v ankun vugn

Sulphur can exist in the form of thiosulphate, and can react and form $S_2 O_6^{\ 2^-}$. Write the conjugate redox pair for the reaction.

Your Turn!

Question 16

The following reaction turns bromine into bromate ions.

$$Br_2(l) + 6H_2O(l) \rightarrow 2BrO_3^-(aq) + 12H^+(aq) + 10e^-$$

Write the conjugate redox pair.

Question 1/	0	uestion	17
-------------	---	---------	----

Write the conjugate redox pair between permanganate ions and manganese dioxide.

Key Takeaways

Oxidation Reaction	Reduction Reaction
Electrons are Lost.	Electrons are Gained.
Oxidation Number Increases.	Oxidation Number Decreases.

✓ Oxidation Number Rules

- Isolated Elements (e.g., H₂): 0
- lons (e.g., Na⁺): Charge
- lonic Compounds (e.g., NaCl): Charge
- Oxygen (0): -2
- Hydrogen (H): +1
- ullet The sum of oxidation numbers in compound is equal to (e.g., ${
 m H_2SO_4}$ or ${
 m MnO_4}^-$): Charge
- ✓ **Oxidant**: Causes oxidation to other species, itself undergoes reduction.
- **Reductant**: Causes reduction to other species, itself undergoes oxidation.
- ☑ In conjugate redox pairs, the oxidant is always written first.

Section C: Balancing Redox Half Equations

<u>Sub-Section</u>: Balancing Equations in Acidic (H⁺) Environments

Context

- How do we actually balance these half-equations?
- How can the following reaction be balanced?

$$K \rightarrow K^+$$

- **G** Balance the **S**_______.
- How can the following equation be balanced?

$$Cr_2O_7^{2-}(aq) \to Cr^{3+}(aq)$$

The equation is balanced by introducing other reactants/products which are available.

Exploration: Balancing Equation

Where does this reaction take place? (Hint: Look at the states.)

Reagents Available: 👺

Other Substances present in Water: 3

> Equation balanced by using \$______and \$_____as the reagents.

Exploration: Acidic Environments

Reagents available in acidic environments:

$$H_2O$$
 & H^+

- Balancing Oxygen:
 - Substance which contains oxygen:
 - Oxygen is balanced using:

$$Cr_2O_7^{2-} \to 2Cr^{3+}$$

- What is unbalanced now?
- Balancing Hydrogen:
 - Hydrogen is balanced using:

$$Cr_2O_7^{2-} \rightarrow 2Cr^{3+} + 7H_2O$$

- What is unbalanced now?
- Balancing Charge:
 - Charge is balanced using:

$$14H^{+} + Cr_{2}O_{7}^{2-} \rightarrow 2Cr^{3+} + 7H_{2}O_{1}^{2}$$

Balancing Equations in Acidic Conditions

- Balancing Equation Steps:
 - Balanced the ______
 - Balanced the ______ \$\bar{\sigma}\$ by adding ______ \$\bar{\sigma}\$
 - Balanced the ______ by adding ______
 - Balanced the ______ \$\bar{\sigma}\$ by adding ______ \$\bar{\sigma}\$
 - Included the ______\$
- Acronym:

Let's try a question together!

Question 18 Walkthrough.				
In acidic conditions, nitrate (NO_3^-) can react and turn into nitrogen dioxide gas (NO_2) .				
a. Write a balanced half-equation depicting this process.				
	_			
	_			
	_			
b. Is this an oxidation or reduction reaction?				
c. Is nitrate $(N0_3^-)$ an oxidant or reductant?				
	_			

Recall!

?

Active Recall: What does KOHES stand for?

- **K**: _____
- **)** 0: _____
- ► H: _____
- **▶** E: _____
- **▶** S: _____

Your Turn!

Question 19			
Complete the balanced half-equations, and state whether it is a reduction or oxidation reaction.			
a.	a. Copper (II) ions (Cu ²⁺) turning into copper solid (Cu).		
	Type of Reaction: [Reduction] / [Oxidation]		
b.	Manganese metal (Mn) turning into permanganate (MnO ₄ ⁻).		
	Type of Reaction: [Reduction] / [Oxidation]		
c.	Dihydrogen phosphate (H ₂ PO ₄) turning into a phosphorous solid (P).		
	Type of Reaction: [Reduction] / [Oxidation]		
d.	Chlorine gas (Cl ₂) turning into chlorate ions (ClO ₃ ⁻).		
	Type of Reaction: [Reduction] / [Oxidation]		
Sp	ace for Personal Notes		

Question 20

In the following redox reactions, extract the oxidation and reduction reactions, and identify the oxidant and reductant.

a. $Cr_2O_7^{2-}(aq) + 8H^+(aq) + 3SO_3^{2-}(aq) \rightarrow 2Cr^{3+}(aq) + 3SO_4^{2-}(aq) + 4H_2O(aq)$

Reduction Equation:

Oxidation Equation:

Oxidant: _____ Reductant: _____

b. $6\text{MnO}_4^-(aq) + 18\text{H}^+(aq) + 5\text{S}_2\text{O}_3^{2-}(aq) \rightarrow 6\text{Mn}^{2+}(aq) + 5\text{S}_2\text{O}_6^{2-}(aq) + 9\text{H}_2\text{O}(l)$

Reduction Equation:

Oxidation Equation:

Oxidant: _____ Reductant: _____

Question 21 Additional Question.

Write the oxidation and reduction reaction from the following reaction, and identify the oxidants and reductants.

$$2 \text{MnO}_4^-(\text{aq}) + 3 \text{C}_2 \text{O}_4^{\ 2-}(\text{aq}) + 8 \text{H}^+(\text{aq}) \rightarrow 2 \text{MnO}_2(\text{aq}) + 4 \text{H}_2 \text{O}(\text{l}) + 6 \text{CO}_2(\text{g})$$

Reduction Equation:

Oxidation Equation:

Oxidant Equation: _____ Reductant: _____

Question 22 Additional Question.

Redox reactions occur in the human body as well as in electrochemical cells.

Nicotinamide adenine dinucleotide (NAD) is a vital coenzyme for energy production in the human body. It exists in two forms: an oxidised form, NAD⁺, and a reduced form, NADH.

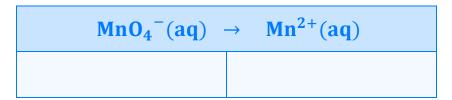
NAD is involved in the conversion of ethanol, CH_3CH_2OH , to ethanal, CH_3CHO , in the human body. The overall equation for this redox reaction is:

$$CH_3CH_2OH + NAD^+ \rightarrow CH_3CHO + NADH + H^+$$

a. Write the two half-equations for this redox reaction. States are not required.

Oxidation half-equation _____

Reduction half-equation _____


b. Identify the reducing agent in this redox reaction.

Exploration: Trick to double-check if the equation is balanced

Consider the following equation:

$$Mn{0_4}^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$

Oxidation Numbers of Manganese:

- Change in Oxidation Number: 🚨
- Number of electrons gained/lost: 2 _____ electrons [gained] / [lost]
- Conclusion: In redox reactions, the change in oxidation number is caused by the substance gaining/losing electrons.

CONTOUREDUCATION

Exploration: Checking this Trick I

Consider the following equation:

$$SO_3^{2-}(aq) + H_2O(l) \rightarrow SO_4^{2-}(aq) + 2H^+(aq) + 2e^-$$

Oxidation Numbers of Sulphur:

$$SO_3^{2-}(aq) \rightarrow SO_4^{2-}(aq)$$

- Change in Oxidation Number: 💈 ______
- Number of electrons gained/lost: <a> _____ electrons [gained] / [lost]

Exploration: Checking this Trick II

Consider the following equation:

$$Cr_2O_7^{\ 2-}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$$

Oxidation Numbers of Chromium:

$$\operatorname{Cr}_2\operatorname{O}_7^{2-}(\operatorname{aq}) \to \operatorname{2Cr}^{3+}(\operatorname{aq})$$

- Change in Oxidation Number: 💆
- Number of electrons gained/lost: \$\frac{1}{2}\$ _____ electrons [gained] / [lost]
- Does this match up? Why? How? \(\bigsize \) [Yes] / [No]

NOTE: As there are **two Cr** atoms, it needs **double** the amount of electrons!

Double Checking Electrons align with the Equation

The number of electrons lost/gained should align with the change in oxidation number.

Space for Personal Notes

Sub-Section: Forming the Overall Equation

We can now get the two half-equations, but how do we form an overall redox reaction?

$\underline{\textbf{Exploration}}\textbf{:} \ \textbf{Forming the Overall Equation}$

What happens to electrons in the overall reaction? (Label Below)

Oxidation:
$$K \rightarrow K^+ + e^-$$

Reduction:
$$2H^+ + 2e^- \rightarrow H_2$$

- Are electrons present in the overall reaction? <a> [Yes] / [No]
- Combine the two half-reactions by 👺 ______ the 👺 ______.

Forming the Overall Equation

Cancel out electrons by finding the lowest common multiple.

Question	23	Walkthrough.
Oucsuon	43	vv aikuii vugii.

Write the overall reaction given the half-equations below:

Oxidation:

$$K \rightarrow K^+ + e^-$$

Reduction:

$$2H^+ + 2e^- \rightarrow H_2$$

Overall

7

Your Turn!

Question 24

Iron (III) Fe^{3+} can be formed from iron (II) Fe^{2+} when reacted with dichromate ions $(Cr_2O_7^{2-})$. Cr^{3+} ions are also formed in the process. Here are the two equations:

- 1. Oxidation: $Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^{-}$
- 2. Reduction: $Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$

Write the balanced overall reaction.

Question 25 (5 marks)

to the equation:

Sulphur dioxide (SO₂) is a chemical of major industrial significance.

a. SO₂ gas can be produced in a reaction between concentrated sulphuric acid (H₂SO₄) and sodium metal. A solution containing Na⁺ ions are also formed.

Write balanced equations for the:

- i. Oxidation reaction. (1 mark)
- ii. Reduction reaction. (1 mark)
- iii. Overall reaction, showing the states of all reactants and products. (2 marks)

SO₂ can also be produced in a chemical reaction between zinc sulphide (ZnSO₃) and hydrochloric acid according

$$ZnSO_3(s) + 2 H^+(aq) \rightarrow Zn^{2+}(aq) + SO_2(g) + H_2O(l)$$

b. Is this reaction also a redox reaction? Explain your answer. (1 mark)

NOTE: When writing an overall redox reaction, you need to first balance the two half-equations first!

Question 26 Additional Question.			
Balance the following equation:			
$Zn(s) + MnO_4^-(aq) \rightarrow Zn^{2+}(aq) + Mn^{2+}$			
	_		
	_		
	_		
	_		

Question 27 Additional Question.	
Balance the following equation:	

$$Sn^{2+}(aq) + IO_3^{-}(aq) \to Sn^{4+}(aq) + I^{-}(s)$$

<u>Sub-Section</u>: Balancing Equations in Basic/Alkaline (OH⁻) Environments

What happens when balancing equations in basic conditions?

Exploration: Basic Conditions

Consider the following equation in basic conditions:

$$SO_4^{\ 2-}(aq) \ + \ 4H^+(aq) \ + \ 2e^- \ \longrightarrow \ SO_2(g) \ + \ 2H_2O(l)$$

- Can H+ be used to balance the equation? <a>\$\bar{z}\$ [Yes] / [No]
- What should be used instead? 🐉
- Reactants used in Basic Conditions:

Method to Balance in Basic Conditions

- 1. Balance in _____ a conditions first using KOHES.
- _____ hydrogen ions (H⁺) by adding _____

Ouesuon 20 Waikun ough	Ouestion	28	Walkthrough
------------------------	-----------------	----	-------------

Rewrite the following equation in basic conditions:

$$SO_4^{\ 2-}(aq) \ + \ 4H^+(aq) \ + \ 2e^- \ \longrightarrow \ SO_2(g) \ + \ 2H_2O(l)$$

Question 29 Walkthrough.

Write a balanced equation in basic conditions for the reaction where manganese ions (Mn^{2+}) turns into permanganate ions (MnO_4^{-}) .

TIP: You can also **double-check** whether the half equation has been balanced by **counting the charge** on both sides of the equation.

Your Turn!

Question 30					
Write th	e reaction of $\operatorname{Cr}_2\operatorname{O}_7^{2-}$ ions to Cr^{3+} ions under alkaline conditions.				
Question 31					
Write the reaction of IO_3^- into I_2 under alkaline conditions.					
Space f	or Personal Notes				

Question 32	
Write the reaction of O_2 into H_2O under alkaline conditions.	
	_
	_
	_
	_
Question 33 Additional Question.	
Balance the following unbalanced overall equations in basic conditions:	
$S^{2-} + NO_3^- \rightarrow S + NO$	
	_
	_
	_
	_
	_
	_
Space for Personal Notes	

Contour Check

<u>Learning Objective</u>: [1.6.1] - Apply oxidation numbers to find oxidant & reductant.

Study Design

Redox reactions as simultaneous oxidation and reduction processes, and the use of oxidation numbers to identify the reducing agent, oxidising agent and conjugate redox pairs.

Key Takeaways

- Redox reactions mast occur		Redox reactions must occur	
------------------------------	--	----------------------------	--

Redox is the	of electrons - one substance gives away electrons, t	he other
substance takes in electrons.		

Oxidation Reaction	Reduction Reaction
Electrons are [Gained] / [Lost].	Electrons are [Gained] / [Lost].
Oxidation Number [Increases] / [Decreases].	Oxidation Number [Increases] / [Decreases].

П	\cap	idatio	n Ni	ımb	or Ri	عمار
	l JX	шаш)		-1 71	111-

- Isolated Elements (e.g., H₂):
- O lons (e.g., Na⁺):
- Ionic Compounds (e.g., NaCl):
- Oxygen (0):
- O Hydrogen (H):
- \circ Sum of oxidation numbers in compound is equal to (e.g., H_2SO_4 or MnO_4):
- Oxidant: Causes [reduction] / [oxidation] to other species, itself undergoes [reduction] / [oxidation].

Reductant: Causes [reduction] / [oxidation] to other species, itself undergoes [reduction] / [oxidation].				
☐ In conjugate redox pairs, the [oxidant] / [reductant] is always written first.				
Learning Objective: [1.6.2] - Apply KOHES to write balanced half-equations and overall equations in acidic & basic conditions.				
Study Design				
The writing of balanced half-equations (including states) for oxidation and reduction reactions, and the overall redox cell reaction in both acidic and basic conditions.				
Key Takeaways				
□ Balancing Equation Steps:				
Balanced the				
O Balanced the by adding				
O Balanced the by adding				
O Balanced the by adding				
O Included the				
Acronym:				
☐ Balancing in Basic Conditions:				
1. Balance in conditions first using KOHES.				
2hydrogen ions (H ⁺) by adding				
□ Number of electrons lost/gained should align with change in				
☐ Forming Overall Equation: Cancel out by finding				

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Chemistry ¾

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-chemistry-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 137 304 with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

