

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Chemistry ¾
Introduction to Redox [1.6]

Test Solutions

20 Marks. 16 Minutes Writing.

Results:

Test Questions	/15	
Extension Questions	/5	

Section A: Test Questions (15 Marks)

Question 1 (3 marks) Tick whether the following statements are true or false:					
	Statement	True	False		
a.	Reduction and oxidation occur simultaneously.	✓			
b.	An oxidant's oxidation number increases.		✓		
c.	The oxidation number of N in N_2O is $+2$.		✓		
d.	A valid conjugate reductant of CuSO ₄ is CuCl ₃ .		✓		
e.	Both the atoms and charges must balance in both half-equations and the overall equation.	✓			
f	In a balanced half-equation in an alkaline environment, H ⁺ is typically present		<i>-</i>		

Space for Personal Notes

Question 2 (4 marks)

Liquid bromine (Br_2) is often converted into bromate ions (BrO_3^-) and added to foods such as breads and pastries to improve their texture and volume.

a. Write the balanced half-equation for this process in a low pH environment. (1 mark)

Br₂(l) + 6H₂O(l) \rightarrow 2BrO₃⁻(aq) + 12H⁺(aq) + 10e⁻

b.

i. Explain whether this is an oxidation or reduction reaction, based on the **position of electrons** in the half equation you wrote in **part a**. (1 mark)

They are on the right/products, and they are being **lost**/removed, so **oxidation.**

ii. Explain whether this is an oxidation or reduction reaction, based on the **change in oxidation number** of Br. (1 mark)

Goes from **0 to +5**. As this is an **increase**, there must have been a **loss in negative charge (electrons)**, and therefore **oxidation**.

c. State the conjugate redox pair for this process. (1 mark)

 $BrO_3^-(aq)/Br_2(l)$

Space for Personal Notes

Question 3 (7 marks)

For this question, you may assume everything takes place in an acidic environment, unless otherwise stated.

Given the following unbalanced equation:

$$Cl_2 + Fe_2O_3(s) \rightarrow ClO_4^- + Fe^{2+}$$

a.

i. Write the balanced half-equation for the reduction reaction. (1 mark)

$$Fe_2O_3(s) + 6H^+(aq) + 2e^- \rightarrow 2Fe^{2+}(aq) + 3H_2O(l)$$

ii. State the conjugate reducing agent. (1 mark)

b.

i. Write the balanced half-equation for the oxidation reaction. (1 mark)

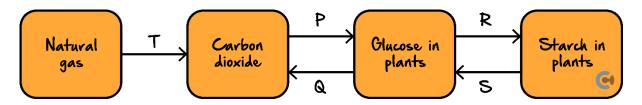
$$Cl_2(g) + 8H_2O(l) \rightarrow 2ClO_4^-(aq) + 16H^+(aq) + 14e^-$$

ii. State the change in oxidation number for the species being oxidised. (1 mark)

Cl:
$$0 \rightarrow +7$$
 OR change of $+7$

c. Hence or otherwise, write the overall balanced equation. (2 marks)

$$7Fe_2O_3(s) + Cl_2(g) + 26H^+(aq) \rightarrow 14Fe^{2+}(aq) + 13H_2O(l) + 2ClO_4^-(aq)$$


d. Had this reaction occurred in a **basic** environment, write what the overall balanced equation would have been. (1 mark)

$$7 {\rm Fe_2O_3}(s) + {\rm Cl_2}(g) + 13 {\rm H_2O}(l) \rightarrow 14 {\rm Fe^{2+}}(aq) + 2 {\rm ClO_4}^-(aq) + 260 {\rm H^-}(aq)$$

Question 4 (1 mark)

A simplified section of the carbon cycle is shown below.

Carbon atoms are oxidised in reaction(s):

- **A.** Q only.
- ${\bf B.}\ \ {\sf S}\ {\sf and}\ {\sf Q}\ {\sf only}.$

9 12 21 56 11

The oxidation of natural gas (methane) in process T and glucose in process Q both involved a change in the oxidation state of carbon. Yet over 30% of students chose option A or B, which did not include process T.

- C. Q and T only.
- **D.** Q, R and T only.

Space for Personal Notes

Section B: Extension Questions (5 Marks)

Question 5 (5 marks)

Use the **overall** equation below to answer the following questions:

$$2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$$

a. Describe how the oxidation number of oxygen varies from the reactants to the products in the above reaction. (2 marks)

It decreases from -1 in H_2O_2 to -2 in water (1), whereas it increases from -1 to 0 in O_2 (2)

- **b.** Hence or otherwise, write the:
 - i. Balanced half-equation for oxidation. (1 mark)

 $0_2(g) + 2H^+(aq) + 2e^- \rightleftharpoons H_2O_2(aq)$

ii. Balanced half-equation for reduction. (1 mark)

 $H_2O_2(aq) + 2H^+(aq) + 2e^- \rightleftharpoons 2H_2O(l)$

c. Explain how your answer from **part a.** links to the **number of electrons** in your answer to **part b. ii**. (1 mark)

Change in oxidation number for 0 was -1. As there are 2 0 atoms in the balanced half equation, there are 2 electrons in the equation.

Space for Personal Notes

Website; contoureducation.com.au | Phone; 1800 888 300 | Email; hello@contoureducation.com.au

VCE Chemistry ¾

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-chemistry-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 137 304</u> with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

