

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Chemistry ¾
Introduction to Redox [1.6]
Test

20 Marks. 16 Minutes Writing.

Results:

Test Questions	/15	
Extension Questions	/5	

Section A: Test Questions (15 Marks)

Question 1 (3 marks)

Tick whether the following statements are true or false:

	Statement	True	False
a.	Reduction and oxidation occur simultaneously.		
b.	An oxidant's oxidation number increases.		
c.	The oxidation number of N in N_2O is $+2$.		
d.	A valid conjugate reductant of CuSO ₄ is CuCl ₃ .		
e.	Both the atoms and charges must balance in both half-equations and the overall equation.		
f.	In a balanced half-equation in an alkaline environment, H ⁺ is typically present.		

Space for	Personal	Notes
-----------	----------	-------

Qu	Question 2 (4 marks)		
	Liquid bromine (Br_2) is often converted into bromate ions (BrO_3^-) and added to foods such as breads and pastries to improve their texture and volume.		
a.	Wr	ite the balanced half-equation for this process in a low pH environment. (1 mark)	
b.	i.	Explain whether this is an oxidation or reduction reaction, based on the position of electrons in the half equation you wrote in part a . (1 mark)	
	ii.	Explain whether this is an oxidation or reduction reaction, based on the change in oxidation number of Br. (1 mark)	
c.	Sta	te the conjugate redox pair for this process. (1 mark)	
Space for Personal Notes			

Question 3 (7 marks)

For this question, you may assume everything takes place in an acidic environment, unless otherwise stated.

Given the following unbalanced equation:

$$Cl_2 + Fe_2O_3(s) \rightarrow ClO_4^- + Fe^{2+}$$

a.

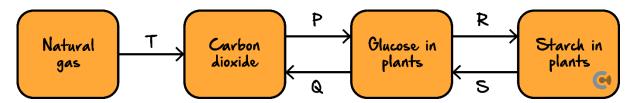
- i. Write the balanced half-equation for the reduction reaction. (1 mark)
- ii. State the conjugate reducing agent. (1 mark)

b.

i. Write the balanced half-equation for the oxidation reaction. (1 mark)

ii. State the change in oxidation number for the species being oxidised. (1 mark)

c. Hence or otherwise, write the overall balanced equation. (2 marks)



d. Had this reaction occurred in a **basic** environment, write what the overall balanced equation would have been. (1 mark)

Question 4 (1 mark)

A simplified section of the carbon cycle is shown below.

Carbon atoms are oxidised in reaction(s):

A. Q only.

П

- **B.** S and Q only.
- C. Q and T only.
- **D.** Q, R and T only.

Space for Personal Notes

Section B: Extension Questions (5 Marks)

Qu	Question 5 (5 marks)		
Us	e the overall equation below to answer the following questions:		
	$2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$		
a.	Describe how the oxidation number of oxygen varies from the reactants to the products in the above reaction. (2 marks)		
b.	Hence or otherwise, write the:		
	i. Balanced half-equation for oxidation. (1 mark)		
	ii. Balanced half-equation for reduction. (1 mark)		
c.	Explain how your answer from part a. links to the number of electrons in your answer to part b. ii . (1 mark)		

Space for Personal Notes

Website; contoureducation.com.au | Phone; 1800 888 300 | Email; hello@contoureducation.com.au

VCE Chemistry ¾

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-chemistry-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 137 304</u> with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

