

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Chemistry ¾
Introduction to Redox [1.6]

Homework Solutions

Homework Outline:

Compulsory Questions	Pg 2 — Pg 11
Supplementary Questions	Pg 12 - Pg 21

Section A: Compulsory Questions (47 Marks)

Sub-Section [1.6.1]: Apply Oxidation Numbers to Find Oxidant & Reductant

Question 1 (4 marks)

Find the oxidation number for all elements in each of the following molecules:

a. C₂H₅COOH. (1 mark)

$$C (in CH_3) = -3$$
 $C (in COOH) = +3$
 $C (in CH_2) = -2$ $O = -2, H = +1$

$$C (in COOH) = +3$$

 $O = -2, H = +1$

b. H_20 . (1 mark)

$$H = +1, 0 = -2$$

c. 0_2 . (1 mark)

$$0 = 0$$

d. CH₄. (1 mark)

$$C = -4, H = +1$$

Question 2 (4 marks)

Preesha is investigating the following chemical reaction:

$$CuO(s) + H_2(g) \rightarrow Cu(s) + H_2O(g)$$

- **a.** Find the oxidation numbers for all atoms in the following molecules:
 - i. CuO. (1 mark)

Cu = +2O = -2

ii. Cu. (1 mark)

Cu = 0

b. Hence, determine and justify whether CuO is an oxidant or a reductant. (2 marks)

CuO is an oxidant (1). This is because the oxidation number of Copper in CuO to Cu decreases from +2 to 0, meaning CuO has undergone reduction (2).

Question 3 (4 marks)

Micah is observing the following reaction occurring at school.

$$2MnO_4^-(aq) + 16H^+(aq) + 10I^-(aq) \rightarrow 2Mn^{2+}(aq) + 5I_2(s) + 8H_2O(l)$$

His friend explains that the oxidising agent in this reaction is MnO_4^- . Evaluate Micah's friend's statement, using calculations as justification.

Micah's friend is correct (1). The manganese ions from MnO_4^- to Mn^{2+} have an oxidation number decrease from +7 to +2 (2). This means that the MnO_4^- has reduced and is the oxidising agent (3).

<u>Sub-Section [1.6.2]</u>: Apply KOHES to Write Balanced Half-Equations in Acidic & Basic Conditions

Question 4 (2 marks)

j

Nitrate ions (NO₃⁻) turn into nitrogen gas (N₂) in a laboratory.

a. Write the half-equation in acidic conditions. (1 mark)

$$2NO_3^-(aq) + 12H^+(aq) + 10e^- \rightarrow N_2(g) + 6H_2O(l)$$

b. Write the half-equation in alkaline conditions. (1 mark)

$$10e^{-} + {}^{6H_2O(1)} + {}^{2NO_3}(aq) \rightarrow N_2(g) + 12OH(aq)$$

Question 5 (4 marks)

Complete the balanced half-equation for each of the following, and state whether it is a reduction or oxidation reaction.

a. Iron (II) ions turning into iron solid. (1 mark)

$$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$$
, reduction

b. AgNO₃ turning into silver solid. (1 mark)

 $Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$, reduction

c. Ethanol (CH₃CH₂OH) turning into ethanoic acid (CH₃COOH). (1 mark)

 $H_2O(1) + C_2H_5OH(1) \rightarrow CH_3COOH(1) + 4H^+(aq) + 4e^-$, oxidation

d. Nitrogen dioxide (NO_2) turning into nitrogen gas (N_2) . (1 mark)

 $8e^- + 8H^+(aq) + 2NO_2(aq) \rightarrow N_2(g) + 4H_2O(l)$

Question 6 (4 marks)

In acidic conditions, dichromate $(Cr_2O_7^{2-})$ can react and turn into chromium ions (Cr^{3+}) .

Write a balanced half-equation for this process. (1 mark)

 $6e^{-} + 14H^{+}(aq) + Cr_{2}O_{7}^{2-}(aq) \rightarrow 2Cr^{3+}(aq) + 7H_{2}O(1)$

b. State whether this is an oxidation or reduction reaction and justify why. (2 marks)

Reduction reaction as there is a gain of electrons. Additionally the oxidation number of chromium goes from +6 to +3, indicating reduction has occurred.

c. Hence or otherwise, is Cr³⁺ an oxidant or reductant? (1 mark)

Since Cr3+ was produced in a reduction reaction, this means when Cr3+ reacts, it must undergo oxidation. Therefore it is a reductant.

<u>Sub-Section [1.6.3]</u>: Apply KOHES to Write Balanced Half-Equations and Overall Equations in Acidic & Basic Conditions

Question 7 (6 marks)

Express the overall equation using the half equations provided.

a. Oxidation half-equation: (2 marks)

$$2I^{-}(aq) \rightarrow I_{2}(s) + 2e^{-}$$

Reduction half-equation:

$$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O(l)$$

$$egin{aligned} 5\left(2 ext{I}^-(aq) o ext{I}_2(s) + 2e^-
ight) \ 2\left(ext{MnO}_4^-(aq) + 8 ext{H}^+(aq) + 5e^- o ext{Mn}^{2+}(aq) + 4 ext{H}_2 ext{O}(l)
ight) \end{aligned}$$

Now combine them:

10I⁻(aq)
$$+ 2 \text{MnO}_4^-(aq) + 16 \text{H}^+(aq) \rightarrow \text{I}_2(g) + 2 \text{Mn}^{2+}(aq) + 8 \text{H}_2 \text{O}(l)$$

b. Oxidation half-equation: (2 marks)

$$Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$$

Reduction half-equation:

$$Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$$

Oxidation:

$$\mathrm{Zn}(s) o \mathrm{Zn}^{2+}(aq) + 2e^-$$

· Reduction:

$$\mathrm{Cu}^{2+}(aq) + 2e^- o \mathrm{Cu}(s)$$

Both have the same number of electrons (2), so just add them directly:

$$\mathrm{Zn}(s)+\mathrm{Cu}^{2+}(aq) o\mathrm{Zn}^{2+}(aq)+\mathrm{Cu}(s)$$

c. Oxidation half-equation: (2 marks)

$$H_2O_2(aq) \rightarrow O_2(g) + 2e^-$$

Reduction half-equation:

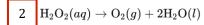
$$H_2O_2(aq) + 2e^- + 2H^+(aq) \rightarrow H_2O(l)$$

Oxidation:

$$\mathrm{H_2O_2}(aq)
ightarrow \mathrm{O_2}(g) + 2e^-$$

Reduction:

$$\mathrm{H_2O_2}(aq) + 2e^- + 2\mathrm{H}^+(aq)
ightarrow \mathrm{H_2O}(l)$$


Both have the same number of electrons (2), so just add them directly:

$$\mathrm{H_2O_2}(aq)
ightarrow \mathrm{O_2}(g) + 2e^-$$

$$\mathrm{H_2O_2}(aq) + 2e^- + 2\mathrm{H^+}(aq)
ightarrow \mathrm{H_2O}(l)$$

Resulting in:

Question 8 (3 marks)

Lead (II) Pb^{2+} can be formed from Lead solid, Pb, when reacted with permanganate ions (MnO_4^-) . Mn^{2+} ions are formed in the process.

Write the balanced equation for:

a. The oxidation reaction. (1 mark)

$$Pb(s) \rightarrow Pb^{2+}(aq) + 2e^{-}$$

b. The reduction reaction. (1 mark)

$$5e^- + 8H^+(aq) + MnO_4^-(aq) \rightarrow Mn^{2+}(aq) + 4H_2O(1)$$

c. The overall reaction. (1 mark)

$$5Pb(s) + 16H^{+}(aq) + 2MnO_{4}^{-}(aq) \rightarrow 5Pb^{2+}(aq) + 2Mn^{2+}(aq) + 8H_{2}O(l)$$

Question 9 (4 marks)

Magnesium (Mg) can react with water (H_2O) in an alkaline environment to form magnesium hydroxide $(Mg(OH)_2)$ and hydrogen gas (H_2) .

Write the balanced equation for:

a. The oxidation reaction. (1 mark)

$${
m Mg}(s)
ightarrow {
m Mg}^{2+}(aq) + 2e^-$$

b. The reduction reaction. (1 mark)

$$2\mathrm{H_2O}(l) + 2e^-
ightarrow \mathrm{H_2}(g) + 2\mathrm{OH}^-(aq)$$

- **c.** The overall reaction. (2 marks)
 - Oxidation reaction:

$${
m Mg}(s)
ightarrow {
m Mg}^{2+}(aq) + 2e^-$$

• Reduction reaction:

$$2\mathrm{H}_{\circ}\mathrm{O}(l) + 2e^-
ightarrow \mathrm{H}_{\circ}(g) + 2\mathrm{OH}^-(aq)$$

Now, combine the two reactions by canceling out the electrons:

$$\mathrm{Mg}(s) + 2\mathrm{H_2O}(l)
ightarrow \mathrm{Mg(OH)_2}(aq) + \mathrm{H_2}(g)$$

Sub-Section: The 'Final Boss'

Question 10 (12 marks)

Liam is experimenting with Potassium dichromate $(K_2Cr_2O_7)$ reacting with ethanol (C_2H_5OH) , forming chromium (III) ions and acetic acid (CH_3COOH) in a reaction vessel with a pH of 8.2.

a. His friend explains that the reducing agent in this reaction is K₂Cr₂O₇. Evaluate Liam's friend's statement, using calculations as justification. (4 marks)

Oxidation numbers:

Considering into the represented by "x" 2x + (7x - 2) = -2 2x = +12 x = +6 x = +3

Liam's friend is incorrect (1). The chromium ions of $Cr_2O\tau^{2-}$ to Cr^{3+} have an oxidation number decrease from +6 to +3 (2). This means that the $Cr_2O\tau^{2-}$ has reduced and is the oxidising agent (3).

- **b.** Express the half-equations involving the following and state the type of reaction occurring.
 - i. Oxidant. (2 marks)

 $Cr_2O_7^{2-}(aq) + 7H_2O(l) + 6e^- \rightarrow 2Cr^{3+}(aq) + 140H^-(aq)$

ii. Reductant. (2 marks)

 $C_2H_5OH(aq) + 4OH^-(aq) \rightarrow CH_3COOH(aq) + 4e^- + 3H_2O(aq)$

- **c.** Write the complete reaction that Liam is observing. (2 marks)
 - Oxidation half-equation (multiplied by 3):

$$3C_2H_5OH(aq) + 12OH^-(aq) \rightarrow 3CH_3COOH(aq) + 12e^- + 9H_2O(l)$$

Reduction half equation (multiplied by 2)

$$2Cr_2O_7^{2-}(aq) + 14H_2O(l) + 12e^- \rightarrow 4Cr^{3+}(aq) + 28OH^-(aq)$$

Now, we can add the two half-equations together:

$$2Cr_2O_7^{2-}(aq) + 3C_2H_5OH(aq) + 5H_2O(l) \rightarrow 3CH_3COOH(aq) + 4Cr^{3+}(aq) + 16OH^{-}(aq)$$

d. Liam is also curious about the following reaction:

$$HNO_3(aq) + KOH(aq) \rightarrow KNO_3(aq) + H_2O(l)$$

State and explain whether the above reaction is a redox reaction. (2 marks)

No, there is no change of oxidation numbers across any of the species. This reaction rather is an acid-base reaction.

Section B: Supplementary Questions (43 Marks)

Sub-Section [1.6.1]: Apply Oxidation Numbers to Find Oxidant & Reductant

Question 11 (4 marks)

State the oxidation number for the element specified in the molecule/ion provided.

a. Oxidation number of Chromium in CrO_4^{2-} . (1 mark)

Cr = +6, 0 = -2

b. Oxidation number of Sulphur in SO_3^{2-} . (1 mark)

S = +4, 0 = -2

c. Oxidation number of Phosphorus in H₂PO₄⁻. (1 mark)

P = +5, H = +1, O = -2

d. Oxidation number of Nitrogen in NO₃⁻. (1 mark)

N = +5, 0 = -2

Question 12 (4 marks)

Natalie is investigating the following chemical reaction:

$$ZnO(s) + C(s) \rightarrow Zn(s) + CO_2(g)$$

- **a.** Find the oxidation numbers for all atoms in the following molecules:
 - **i.** C. (1 mark)

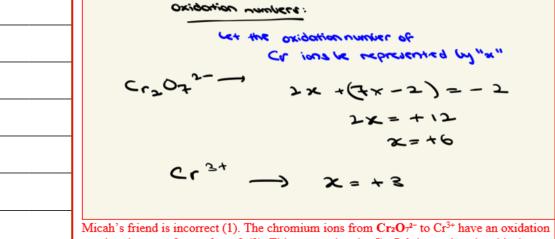
C = 0

ii. CO₂. (1 mark)

C = +4, 0 = -2

b. Hence, determine and justify whether C (carbon) is a reductant or an oxidant. (2 marks)

C is a reductant (1). This is because the oxidation number of Carbon in C to CO_2 increases from 0 to +4, meaning C has undergone oxidation (2).


Question 13 (4 marks)

Kanta is observing the following reaction occurring at school:

$$2Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6I^-(aq) \rightarrow 2Cr^{3+}(aq) + 3I_2(g) + 7H_2O(l)$$

His friend explains that the reducing agent in this reaction is $Cr_2O_7^{2-}$. Evaluate Kanta's friend's statement, using calculations as justification.

number decrease from +6 to +3 (2). This means that the $\mathbf{Cr_2O}\tau^{2^-}$ has reduced and is the oxidising agent (3).

Question 14

In an acidic solution, ascorbic acid ($C_6H_8O_6$) reacts with dichromate ions ($Cr_2O_7^{2-}$), resulting in the formation of chromium(III) ions (Cr^{3+}) and dehydroascorbic acid ($C_6H_6O_6$).

$$C_6H_8O_6(aq) \, + \, Cr_2O_7^{2-}(aq) \, + \, 8H^+(aq) \, \rightarrow \, C_6H_6O_6(aq) \, + \, 2Cr^{3+}(aq) \, + \, 4H_2O(l)$$

A friend claims that $C_6H_8O_6$ is the reducing agent in this reaction. Evaluate this claim, justify your response with the relevant calculations.

cet the oxidation number of
corbon be represented by "a"
C64806 - 6x+8+(6x-2)=0
X=+2
$C_6H_6O_6 \longrightarrow 6x + 6 + (6x - 2) = 0$
x=+3

<u>Sub-Section [1.6.2]</u>: Apply KOHES to Write Balanced Half-Equations in Acidic & Basic Conditions

Question 15 (2 marks)

Perchlorate ions (ClO₄⁻) turn into chlorine gas (Cl₂) in a laboratory.

a. Write the half-equation in acidic conditions. (1 mark)

 $2ClO_4^{\ 2^-}(aq) + 16H^+ + 14e^- \rightarrow Cl_2(g) + 8H_2O(l)$

b. Write the half-equation in alkaline conditions. (1 mark)

 $2ClO_4^{2-}(aq) + 8H_2O(l) + 14e^- \rightarrow Cl_2(g) + 16OH^-(aq)$

Question 16 (4 marks)

Complete the balanced half-equation for each of the following, and state whether it is a reduction or oxidation reaction.

a. Copper (II) ions turning into copper solid. (1 mark)

 $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$ (Reduction, Cu goes from +2 to 0.)

b. Silver oxide (Ag_2O) turning into silver solid. (1 mark)

 $- Ag_2O(s) + 2e^- \rightarrow 2Ag(s) + O^{2-}(aq)$ (Reduction, Ag goes from +1 to 0.)

c. Butanol (C₄H₉OH) turning into butanoic acid (C₄H₈O₂). (1 mark)

 $C_4H_9OH \rightarrow C_4H_8O_2 + 2e^-$ (Oxidation, C goes from -1 to +3.)

d. Nitrous oxide (N_2O) turning into nitrogen gas (N_2) . (1 mark)

 $N_2O \rightarrow N_2 + O$ (Reduction, N goes from +1 to 0.)

Question 17 (4 marks)

In acidic conditions, potassium permanganate (KMnO₄) can react and turn into manganese ions (Mn²⁺).

a. Write a balanced half-equation for this process. (1 mark)

 ${
m MnO}_{_4}^{_-}(aq) + 8H^+(aq) + 5e^-
ightarrow {
m Mn}^{_{2^+}}\!(aq) + 4H_2O(l)$

- **b.** State whether this is an oxidation or reduction reaction and justify why. (2 marks)
 - This is a **reduction reaction** because the oxidation number of manganese decreases.
 - In $\mathbf{MnO_4}^-$, the oxidation number of manganese is +7, but in $\mathbf{Mn^{2+}}$, it is +2. Since the oxidation number of manganese decreases, it means that $\mathbf{MnO_4}^-$ is gaining electrons (reduction).
- **c.** Hence or otherwise, is Mn²⁺ an oxidant or reductant? (1 mark)

 Mn^{2+} is a **reductant** (**reducing agent**) because it has a low oxidation state of +2 and can easily donate electrons to other species (undergoing oxidation itself).

Question 18 (4 marks)

In acidic conditions, potassium dichromate (K₂Cr₂O₇) reacts and turns into chromium(III) ions (Cr³⁺).

a. Write a balanced half-equation for the reduction of potassium dichromate to chromium(III) ions in acidic conditions. (1 mark)

$$ext{Cr}_2 ext{O}_7^{2-}(aq) + 14 ext{H}^+(aq) + 6e^- o 2 ext{Cr}^{3+}(aq) + 7 ext{H}_2 ext{O}(l)$$

b. State whether this is an oxidation or reduction reaction and justify why. (2 marks)

The oxidation number of chromium in **dichromate** $(Cr_2O_7^{2-})$ is **+6**, while in **chromium(III)** ions (Cr^{3+}) , the oxidation number is **+3**.

Since the oxidation number of chromium decreases, it indicates that the **chromium has** gained electrons in the reaction (reduction).

This is further evidenced by the presence of **electrons** on the left-hand side of the half-equation, indicating a gain of electrons.

c. Hence or otherwise, is Cr³⁺ an oxidant or reductant? (1 mark)

Chromium(III) ions (Cr³+) have an oxidation state of +3, which is relatively low. Therefore, they can easily lose electrons to be oxidized to a higher oxidation state (e.g., Cr^{6+} or $Cr_2O_7^{2-}$).

A species with a low oxidation state (like Cr³+) is a good **reducing agent** because it can donate electrons to other species and undergo **oxidation** itself.

<u>Sub-Section [1.6.3]</u>: Apply KOHES to Write Balanced Half-Equations and Overall Equations in Acidic & Basic Conditions

Question 19 (4 marks)

Express the overall equation using the half-equations provided.

a. Oxidation half-equation: (2 marks)

$$Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^{-}$$

Reduction half-equation:

$$\begin{aligned} \operatorname{Cr_2O_7}^{2-}(\operatorname{aq}) + 14\operatorname{H}^+(\operatorname{aq}) + 6\operatorname{e}^- &\to 2\operatorname{Cr}^{3+}(\operatorname{aq}) + 7\operatorname{H}_2\operatorname{O}(\operatorname{I}) \\ \bullet & \operatorname{Oxidation:} \\ & \operatorname{Fe}^{2+}(aq) \to \operatorname{Fe}^{3+}(aq) + e^- \\ \bullet & \operatorname{Reduction:} \\ & \operatorname{Cr_2O_7^{2-}(aq)} + 14\operatorname{H}^+(aq) + 6e^- \to 2\operatorname{Cr}^{3+}(aq) + 7\operatorname{H}_2\operatorname{O}(\operatorname{I}) \\ & \operatorname{Multiply the oxidation half-equation by 6 and the reduction half-equation by 1 to balance electrons:} \\ & \operatorname{6Fe}^{2+}(aq) \to \operatorname{6Fe}^{3+}(aq) + 6e^- \\ & \operatorname{Now combine:} \\ & \operatorname{6Fe}^{2+}(aq) + \operatorname{Cr_2O_7^{2-}(aq)} + 14\operatorname{H}^+(aq) \to \operatorname{6Fe}^{3+}(aq) + 2\operatorname{Cr}^{3+}(aq) + 7\operatorname{H}_2\operatorname{O}(\operatorname{I}) \end{aligned}$$

b. Oxidation half-equation: (2 marks)

$$2Cl^{-}(aq) \rightarrow Cl_{2}(g) + 2e^{-}$$

Reduction half-equation:

$$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$$

Question 20 (4 marks)

Zinc(II) Zn^{2+} can be formed from Zinc solid, Zn, when reacted with dichromate ions $(Cr_2O_7^{2-})$. Cr^{3+} ions are formed in the process.

Write the balanced equation for:

a. The oxidation reaction. (1 mark)

$$\mathrm{Zn}(s) o \mathrm{Zn}^{2+}(aq) + 2e^-$$

b. The reduction reaction. (1 mark)

$$ext{Cr}_2 ext{O}_7^{-2-}(aq) + 14H^+(aq) + 6e^- o 2 ext{Cr}^{3+}(aq) + 7H_2O(l)$$

c. The overall reaction. (2 marks)

Oxidation reaction (multiplied by 3):

$$3\mathrm{Zn}(s)
ightarrow 3\mathrm{Zn}^{2+}(aq) + 6e^-$$

Reduction reaction (no change):

$$ext{Cr}_{_2} ext{O}_{_7}^{\ 2-}(aq) + 14H^+(aq) + 6e^-
ightarrow 2 ext{Cr}^{3+}(aq) + 7H_2O(l)$$

Now, combine the two reactions:

$$3{
m Zn}(s)+{
m Cr_2O_7}^{2-}(aq)+14H^+(aq) o 3{
m Zn}^{2+}(aq)+2{
m Cr}^{3+}(aq)+7H_2O(l)$$

Question 21 (4 marks)

Sodium (Na) reacts with water in an alkaline environment to form sodium hydroxide and hydrogen gas.

Write the balanced equation for:

a. The oxidation reaction. (1 mark)

$$\mathrm{Na}(s)
ightarrow \mathrm{Na}^+(aq) + e^-$$

b. The reduction reaction. (1 mark)

$$2 ext{H}_{ ext{2}} ext{O}(l) + 2e^-
ightarrow ext{H}_{ ext{2}}(g) + 2 ext{OH}^-(aq)$$

- **c.** The overall reaction. (2 marks)
 - Oxidation reaction:

$$\mathrm{Na}(s)
ightarrow \mathrm{Na}^+(aq) + e^-$$

· Reduction reaction:

$$2\mathrm{H}_{\circ}\mathrm{O}(l) + 2e^-
ightarrow \mathrm{H}_{\circ}(g) + 2\mathrm{OH}^-(aq)$$

Now, combine them:

$$2\mathrm{Na}(s) + 2\mathrm{H_2O}(l) \rightarrow 2\mathrm{NaOH}(aq) + \mathrm{H_2}(g)$$

Question 22 (5 marks)

In the paper industry, bleaching is a crucial process to eliminate colour from pulp, ensuring the production of high-quality paper. Chlorine or chlorine compounds are commonly used in redox reactions to oxidise and remove impurities, enhancing the paper's brightness and quality.

a. Chlorine gas is used in a reaction with water. This purifies pulp and produces oxygen gas (0_2) and hypochlorous acid (HOCl).

Write a balanced equation for the:

i. Oxidation reaction. (1 mark)

$$2H_2O(1) + Cl_2(g) \rightarrow 2HOCl(aq) + 2H^+(aq) + 2e^-$$

ii. Reduction reaction. (1 mark)

$$H_2O(1) \rightarrow O_2(g) + 4H^+(aq) + 4e^-$$

iii. Overall reaction. (1 mark)

$$5H_2O(1) + 2Cl_2(g) \rightarrow 4HOCl(aq) + 8H^+ + O_2(g)$$

b. Hydrochloric acid (HCl) is also often used as an alternative to using chlorine gas. HCl can undergo the following reaction:

$$HCl(aq) + NaOH(aq) \rightarrow H_2O(l) + NaCl(aq)$$

State and explain whether the above reaction is a redox reaction. (2 marks)

No, there is no change of oxidation numbers across any of the species. This reaction rather is an acid-base reaction.

Website; contoureducation.com.au | Phone; 1800 888 300 | Email; hello@contoureducation.com.au

VCE Chemistry ¾

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via <u>bit.ly/contour-chemistry-consult-2025</u> (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 137 304 with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

