

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Chemistry ¾
Gas Calculations & Stoichiometry [1.3]
Test

20 Marks. 2 Minutes Reading. 18 Minutes Writing.

Results:

Test	/15	
Extension	/5	

Section A: Test (15 Marks)

INSTRUCTION: 15 Marks. 1 Minute Reading. 12 Minutes Writing.

Question 1 (4 marks)

Tick whether the following statements are **true** or **false**.

	Statement	True	False
a.	In complete combustion, the oxygen is assumed to be the limiting reagent.		
b.	If the efficiency of a spirit burner experiment is 30%, then 70% of the energy released by the fuel was lost to the environment.		
c.	Experimental ΔH values are typically greater than theoretical ones.		
d.	The energy released by a fuel in a spirit burner is never less than the energy absorbed by the water being heated.		
e.	Volume-volume stoichiometry may only be used if the temperature and pressure are constant at SLC.		
f.	At Standard Laboratory Conditions (SLC), one mole of every ideal gas occupies 24.8 <i>L</i> of volume.		
g.	In a chemical reaction, the limiting reagent determines the maximum amount of product that can be formed.		
h.	If 5 moles of hydrogen gas reacts with 2 moles of oxygen gas, the reaction will produce 4 moles of water.		

Space for	Personal	Notes
-----------	----------	-------

Que	stion 2 (4 marks)		
	rne, C_2H_2 , is a chemical compound that can be used as a fuel. Upon combustion of one mole of ethyne at SLC, 0 kJ of energy is released.		
a. '	Write the balanced thermochemical equation for the complete combustion of C ₂ H ₂ . (2 marks)		
	Calculate the volume of CO_2 produced when 200.0 L of C_2H_2 is completely combusted at standard laboratory conditions (SLC). Justify your working with appropriate steps or reasoning. (2 marks)		
-			
Que	stion 3 (1 mark)		
How many kilojoules of energy would be released from the production of 49.6 L of carbon dioxide at 25°C and 100 kPa based on the following thermochemical equation?			
	$2CH_3OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 4H_2O(l)$ $\Delta H = -1452 \text{ kJ}$		
-			
-			
Space for Personal Notes			

Qι	Question 4 (6 marks)		
A sample of butan-1-ol (C_4H_9OH) on a spirit burner which initially weighs 78.70 g undergoes complete combustion. After the combustion is complete, it is found that the spirit burner weighs 74.92 g . The heat energy released is used to heat 350 mL of water at SLC. The temperature of the water rises to 53.20°C.			
a.	Calculate the molar heat of combustion of butan-1-ol. (4 marks)		
b.	Given that the process carried out is known to be 65.0% efficient, find the new calculated heat of combustion. (1 mark)		
c.	Propose a major reason as to why the experiment was not 100% efficient. (1 mark)		
Sp	pace for Personal Notes		

Section B: Extension (5 Marks)

INSTRUCTION: 5 Marks. 1 Minute Reading. 6 Minutes Writing.

Question 5 (5 marks)		
A reaction between nitrogen gas and hydrogen gas produces ammonia (NH ₃) according to the balanced equation:		
$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$		
If 5.00 moles of nitrogen and 12.0 moles of hydrogen are reacted:		
a. Calculate the volume of NH ₃ produced. (3 marks)		
b. Determine the amount, in g , of the excess reagent left over. (2 marks)		
		

Space for Personal Notes

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Chemistry ¾

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-chemistry-consult- 2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 137 304</u> with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

