CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Chemistry ¾ Energy Calculations & Delta H [1.2]

Workbook

Outline:

Energy Calculations

Pg 2-23

- Moles & Molar Mass Recap
- Change in Enthalpy Values (kJ/mol)
- Linking Molar Mass and Change in Enthalpy (kJ/mol)
- Change in Enthalpy Values (kJ/g)
- Density of Fuels
- Change in Enthalpy Values (kJ/mL)

Calculating Thermal Energy Released

Pg 24-29

- Introduction to Thermal Energy Released
- Specific Heat Capacity

Experimentally Obtaining Heat of

Combustion

Pg 30-38

Experimental Setup & Energy Calculation

Learning Objectives:

- **CH34** [1.2.1] Apply $q = \Delta H \times n$ to energy released.
- **CH34 [1.2.2]** Apply ΔH in kJ/mol, kJ/g and kJ/mL to energy calculations.
- **CH34 [1.2.3]** Apply $q = mc\Delta T$ to find energy absorbed.
- **CH34** [1.2.4] Calculate ΔH experimentally.

Section A: Energy Calculations

Sub-Section: Moles & Molar Mass Recap

Discussion: What is a mole?

Moles (n)

- **Definition:** A unit of measurement for the ______ of substance which is present!
- ▶ One mole is equivalent to 6.02×10^{23} particles!

<u>SI Unit</u>	<u>Formulae</u>
mol	$n=rac{m}{M}$

TIP: Think about one mole in a similar way to **one dozen - it simply groups amounts of substances together!**

- ► 1 dozen = 12 | 2 dozen = 24
- \blacktriangleright 1 mol = 6.02 × 10²³ | 2 mol = 1.20 × 10²⁴

REMINDER: The molar mass of substances (*M*) can be found by using the periodic table which can be found on **page 14 of the databook**, **item 17**.

Extension: Avogadro's Number

- Avogadro's Number (N_A) can be found on page 4 of the databook, item 3.
- It is a **constant** that indicates the number of particles present in one mole of a substance.
- Value:

$$N_A = 6.02 \times 10^{23} \ mol^{-1}$$

Formulae:

$$n=\frac{N}{N_A}$$

- N Number of particles
- This formula and idea is mainly a Chemistry $\frac{1}{2}$ concept, and is **not tested** in Chemistry $\frac{3}{4}$!

Question 1

If there is 10.0 g of carbon dioxide, calculate the amount (mol) of carbon dioxide present.

VCE Chemistry ¾ Questions? Message +61 440 137 304

		—
Question 2		
eremy finds 8.10	mol of sulphuric acid (H ₂ SO ₄) in a beaker of water. Find the mass of sulphuric acid present	•
ance for Dorce	nal Notae	
pace for Perso	nai notes	

<u>Sub-Section</u>: Change in Enthalpy Values (kJ/mol)

What do changes in enthalpy values actually mean?

Exploration: Change in Enthalpy (ΔH) Values in kJ/mol

Example: Methane

- lt means that for every **one mole** of methane combusted, _____ of heat energy is released.
- How much heat energy is released when two moles of methane is combusted?
- Operations:
- Formulae:
- Formulae Rearranged:

Change in Enthalpy (ΔH) Values in kJ/mol

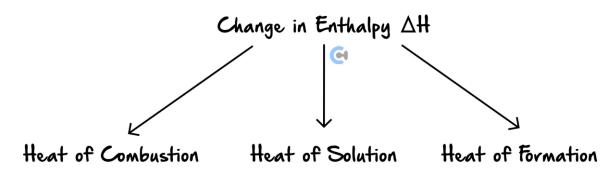
- Definition: Provides the amount of energy released/absorbed during a chemical reaction per mole.
- > SI Units:

kJ/mol

Formulae:

$$\Delta H = \frac{q}{n}$$

 \bullet *n* - Moles (mol)


Alternative Name: Heat of combustion (only if it is a combustion reaction).

NOTE: This formula can be found on page 3 of the databook, item 2.

Extension: Heat of Combustion vs Change in Enthalpy

Change in enthalpy ΔH is the umbrella term:

Misconception

$$^{\prime\prime}\Delta H = \frac{q}{n}$$
 is the same as $\Delta h = \frac{Q}{N}$

TRUTH: The sentence case of each symbol matters!

- For instance:
 - N refers to the **number** of molecules rather than the amount (mol).
 - \bigcirc *Q* refers to electric charge (*C*) rather than energy (*kJ*).

Question 3 Walkthrough.

How much energy is released when $3.40\ mol$ of methanol (CH $_3$ OH) is combusted?

TIP: The units for ΔH values are kJ/mol, and as such, the formula for the ΔH value is the same as its units!

$$\Delta H = \frac{kJ}{mol} = \frac{q}{n}$$

0

<u>REMINDER</u>: For organic chemistry, the following prefixes correspond to the following number of carbons.

<u>Prefix</u>

Question 4				
Ra	chael is investigating the amount of energy released by some fuels she finds in her garage.			
a.	a. How much energy is released when 0.296 <i>mol</i> of butane is combusted completely?			
b.	Find the heat of combustion of decane $(C_{10}H_{22})$ in kJ/mol , given that 0.841 mol of decane releases 3500 kJ of energy.			

VCE Chemistry ¾ Questions? Message +61 440 137 304

TIP: First rearrange the 'raw' equation with the symbols before plugging the numbers in - this helps reduce the clutter of the working out!

Û

REMINDER: Include the **negative sign (–)** when finding the heat of combustion of fuels!

Question 5
4.30 kJ of energy was released when an amount of ethanol was burnt in an unlimited supply of oxygen. Find the amount of ethanol that was burnt.
Question 6 Additional Question.
$10.70 \ kJ$ of energy was released when carbon undergoes complete combustion. Find the amount, in mol , of carbon that was burnt.
Space for Personal Notes

Sub-Section: Linking Molar Mass and Change in Enthalpy (kJ/mol)

What if the mass of a substance is provided instead?

Question 7 Walkthrough.
Find the energy released when $25.0 g$ of octane is completely combusted at SLC.

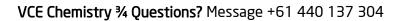
Writing Numerical Working Out

- > Steps:
 - 1. Write the raw formula, with the substance in brackets.
 - 2. Write numbers plugged in.
 - 3. Write an answer.
- Example:

$$n(C_8H_{18}) = \frac{m}{Mr} = \frac{25.0 g}{(8 \times 12 + 18)g/mol} = 0.219 mol$$

$$q = \Delta H \times n = 5470 \frac{kJ}{mol} \times 0.219 mol$$

$$= 1199 kJ = 1.20 \times 10^3 kJ$$



Your Turn!

2)

Question 8		
Find the energy released when 17.70 g of methane is completely combusted at SLC.		
· · · · · · · · · · · · · · · · · · ·		
Question 9		
Find the mass, in grams, of the propane completely combusted to release $2650 kJ$ of energy.		
T		
Space for Personal Notes		

Question 10 Additional Question. When a sample of 8.50 g of pentane is combusted, 239 kJ of energy is measured to be released. Find the heat of combustion, in kJ/mol .	
Space for Personal	Notes

Sub-Section: Change in Enthalpy Values (kJ/g)

Context

- 3
- There is another type of change in enthalpy (ΔH) values: one in kJ/mol and one in kJ/g.
- This is found on page 11 of the databook, items 14 and 15.

NOTE: The blended fuels and biofuels will be covered in detail later!

Exploration: Change in Enthalpy (ΔH) Values in kJ/g

Example: Bioethanol

- lt means that for every **one gram** of bioethanol combusted, _____ of heat energy is released.
- How much heat energy is released when two grams of bioethanol is combusted?
- Formulae:
- Formulae Rearranged:

$$\Delta H = \frac{q}{m}$$

Change in Enthalpy ($\triangle H$) Values in kJ/g

- Definition: Provides the amount of energy released/absorbed during a chemical reaction per gram.
- > SI Units:

Formulae:

$$\Delta H = \frac{q}{m}$$

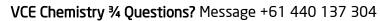
NOTE: Heat of Combustion v/s Molar Heat of Combustion

	Heat of Combustion	Molar Heat of Combustion
<u>Units</u>		
<u>Formulae</u>		

ALSO NOTE: Only the equation for molar heat of combustion is provided in the databook!

TIP: Look at the units of the ΔH (either kJ/mol or kJ/g) to see which formula to use.

Let's look at a question together!


Question 11 Walkthrough.		
Natural gas is tested in various ways, to find the amount of energy it releases.		
a. Find the amount of thermal energy released upon combustion of $6.50 g$ of natural gas.		
b. Natural gas is compared to hydrogen gas, whereby 6.50 <i>g</i> of hydrogen gas is combusted. Find the amount of energy, in kilojoules, that is released during this process.		
NOTE: Look at the databook for what formula you use!		
Space for Personal Notes		

Your Turn!

Qu	estion 12
a.	Calculate the amount of energy released when $23.0 g$ of bioethanol undergoes complete combustion.
b.	Calculate the amount of energy released when 150.0 g of methanol undergoes complete combustion.
Qu	estion 13
Fin	d the mass, in kilograms, of diesel required to release $3.00 \times 10^6~kJ$ of energy.
Sp	ace for Personal Notes

Question 14 Additional Question.
Calculate the amount of energy released when 5.82 g of methane is combusted at 100°C, given that the molar heat of combustion of methane at this temperature is $-844 kJ/mol$.
NOTE: Sometimes, the question may provide their own heat of combustion as the fuel may be combusted at different conditions (100°C rather than at SLC as specified). When this happens, you must use the heat of combustion value provided.
Space for Personal Notes



Sub-Section: Density of Fuels

<u>Discussion:</u> If you grab a hand full of water compared to a hand full of honey, what differences do you expect to see?

Difference is their ______!

Exploration: Density

Consider water and octane:

	Water (H ₂ O)	Octane (C ₈ H ₁₈)
Volume	100mL Water	100mL Octane
Mass		

- Different substances have different **density**, which corresponds to how much **mass** of the fuel is occupied in the same ______.
- ln every 100 mL volume of each substance,

	Water (H ₂ O)	Octane (C ₈ H ₁₈)
Mass / 100 mL		
Mass / 1 mL (Density)		

Density Formulae:

Density (d)

Definition: How tightly a material is packed closely together, which links its mass to its volume occupied.

<u>SI Unit</u>	<u>Formulae</u>
g/mL	$d=\frac{m}{V}$

NOTE: The density formula is not provided on the databook!

Let's look at a question together!

Question 15 Walkthrough.
Given that the density of octane is $0.703 \ g/mL$, find the amount of energy released if $25.0 \ L$ of octane is combusted.
NOTE: If required, density will be provided in the question!
Your Turn!
Question 16
The density of ethanol is $0.790 \ g/mL$. A vial which contains $1.50 \ L$ of ethanol is completely combusted.
a. Find the mass, in grams, of ethanol which is present.

VCE Chemistry 3/4 Questions? Message +61 440 137 304

b.	Calculate the theoretical energy that will be evolved if the $1.50 L$ vial is completely combusted.
Oue	estion 17 Additional Question.
	density of petrol is $0.756 \ g/mL$. When a sample of petrol is completely combusted, it releases $200 \ kJ$ of
ener	
Calc	culate the volume, in mL , of petrol which must have been combusted.
Spa	ice for Personal Notes

Sub-Section: Change in Enthalpy Values (kJ/mL)

Change in Enthalpy (ΔH) Values in kJ/mL

- **Definition**: Provides the amount of energy released/absorbed during a chemical reaction per mL.
- > SI Units:

kJ/mL

Formulae:

$$\Delta \boldsymbol{H} = \frac{\boldsymbol{q}}{\boldsymbol{V}}$$

Question 18
Kerosene is used for cooking and lighting in houses. A sample of 10.50 <i>L</i> of kerosene is completely combusted. Calculate the amount of energy released, in megajoules.

Question 19

Using item 14 of the databook, find the density of diesel.	

Question 20 Additional Question.

Petrol is used in cars. For a car to move 50 km, 175 MJ of energy must be released by the fuel. Find the volume of	ıf
petrol, in litres, required for this to occur.	

Key Takeaways

- \checkmark To convert between mass and moles, $n = \frac{m}{Mr}$.
- ightharpoonup To find energy released by a fuel, use the Data Book, and the formula $q = \Delta H \times n$.
- ightharpoonup The heat of combustion ΔH value can be calculated in the following ways:

ΔH (kJ/mol)	<u>ΔΗ (kJ/g)</u>	<u>ΔΗ (kJ/mL)</u>
$\Delta H = \frac{q}{n}$	$\Delta H = \frac{q}{m}$	$\Delta H = \frac{q}{V}$

ightharpoonup Density is used to convert between mass and volume: $d = \frac{m}{V}$

VCE Chemistry 3/4 Questions? Message +61 440 137 304

Section B: Calculating Thermal Energy Released

Sub-Section: Introduction to Thermal Energy Released

While we can now <u>calculate</u> how much heat is released, how do we <u>measure</u> the amount of heat energy released?

Discussion: How can we measure 'heat'?

How do we measure 'heat'?

<u>Instrumentation</u>	<u>Measures</u>

How do we measure heat energy?

NOTE: We usually try to heat up _____!

Why can't we just measure the change in temperature to find the heat energy released?

R

Exploration: Thermal Energy v/s Temperature

Imagine burning a massive pot of water with $1000 \, mL$ of water vs a tiny pot of water with $10 \, mL$ of water:

1000mL Water

10mL Water

Which pot boils quicker?

- Main factor affecting the amount of thermal energy absorbed by the pot?
- The thermal energy absorbed can then be calculated.

Sub-Section: Specific Heat Capacity

Specific Heat Capacity of Water

4. 18
$$J g^{-1}$$
 °C⁻¹

What does this mean?

Exploration: Specific Heat Capacity

- It means that 4.18 J of energy is required to increase the temperature of 1 g water by 1°C.
 - ullet How much energy is required to heat up 2 g of water by 1°C?
 - How much energy is required to heat up 2 g of water by 2°C?
- Formula:

$$q = mc\Delta T$$

Misconception

"Both"T" and "t" can be used to denote temperature"

TRUTH: They mean different things!

- 'T' refers to ______.
- 't' refers to ______ .
- Make sure to write T when looking at the specific heat capacity formula!

NOTE: To convert from degrees Celsius (°C) to Kelvin (K), we simply add 273!

$$\mathbf{K} = \mathbf{C} + \mathbf{273}$$

ALSO NOTE: This can also be found on page 5 of the databook under 'unit conversions'.

Exploration: For the specific heat capacity formula, do we use degrees Celsius (°C) or Kelvin (K)?

Initial Temperature: 35°C	Final Temperature: 40°C	Change in Temperature: <u>5°C</u>
Initial Temperature:	Final Temperature:	Change in Temperature:

- This is because it is the ______ in temperature rather than the absolute value of the temperature!
- As such, _____ Kelvin (K) or degrees Celsius (°C) can be used!

Specific Heat Capacity

- Definition: The amount of heat that must be added to one unit of mass of the substance to cause an increase of one unit in temperature.
- Specific Heat Capacity of Water:

4. 18
$$J g^{-1} \, {}^{\circ}\text{C}^{-1}$$

Formula:

$$q = mc\Delta T$$

> Change in Temperature Measured in:

°C or K

Qı	uestion 21 Walkthrough.			
	A sample of burning food is used to heat 130 g of water. Calculate the heat energy, in kilojoules, that has been transferred, if the temperature of the water increases from 18.5°C to 44.0°C.			
	Your Turn!			
Qı	nestion 22			
a.	Calculate the heat energy, in kJ , needed to increase the temperature of 500 g of water by 15°C.			
b.	If 19.5 kJ of energy caused a pot of water to increase in temperature from 18.0°C to 46.2°C, find the volume of water that was present.			
Sp	pace for Personal Notes			

Question 23 Additional Question.
Calculate the heat energy, in kJ , required to heat up a bottle containing 250 mL of water from 25°C to 42°C.
Key Takeaway
To measure the energy absorbed by water, it can be calculated by $q=mc\Delta T$, whereby the specific heat capacity of water is 4.18 J g^{-1} °C ⁻¹ .
Space for Personal Notes

Section C: Experimentally Obtaining Heat of Combustion

Context

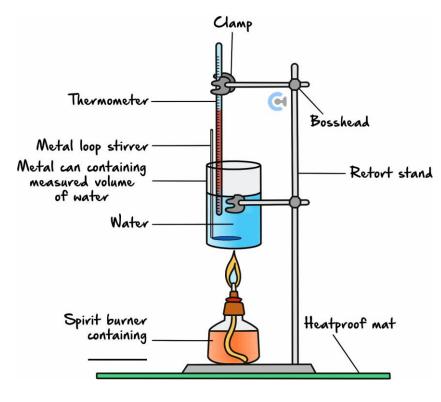
 \blacktriangleright We've covered how to obtain the heat of combustion (ΔH) value by using the following equation:

$$\Delta \boldsymbol{H} = \frac{\boldsymbol{q}}{\boldsymbol{n}}$$

 \blacktriangleright But how do we get the energy (q) and the amount of fuel (n) in real life?

Active Recall: What is a thermochemical equation?

\setminus
M.



Sub-Section: Experimental Setup & Energy Calculation

Exploration: Experimental Setup to Obtain Heat of Combustion

Setup:

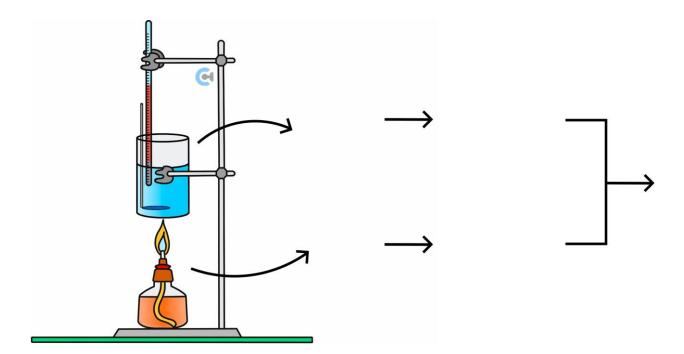
$$\Delta \boldsymbol{H} = \frac{\boldsymbol{q}}{\boldsymbol{n}}$$

How do we find the amount (mol) of the fuel which is combusted? (**Hint**: Imagine we only burn the fuel in the spirit burner for $20 \ s$. How do we measure the amount of fuel that has combusted?)

G	

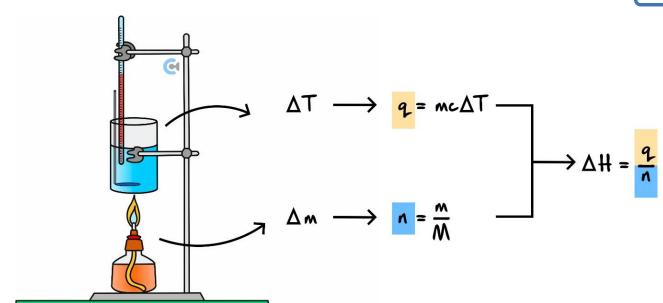
As the fuel is combusted, it releases thermal energy. Where does this thermal energy go?

As the water absorbs thermal energy, what happens to its temperature? [increases]/[decreases]



How do we find the energy absorbed by the water?

@ ______


G

Whole process visualised:

Let's look at some questions together!

Question 24 Walkthrough.
A sample of 5.47 g of methanol (CH ₃ 0H) undergoes complete combustion in a spirit burner. By the end of the experiment, there is 1.92 g of methanol left. The heat energy released is used to heat 100 mL of water. The temperature of the water rises from 20.24°C to 37.65°C.
Calculate the heat of combustion of methanol in kJ/mol .
- wy
TIPS
Sometimes it's easier to start the question by writing the final equation that will be used ($\Delta H = \frac{q}{n}$ in this case) and then work backwards !
Drawing a diagram may help visualise the scenario at hand!
NOTE: The question will usually be broken up into smaller parts!
Space for Personal Notes

Recall!

Active Recall: What are the steps to find ΔH experimentally?

- 1. ______
- 2. _____
- 3. _____

Your Turn!

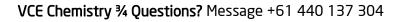
Question 25 (3 marks)

by the water.

A student used a spirit burner that contained heptane (C_7H_{16}) to heat a metal canister with 300 mL of water.

Initial mass of spirit burner (g)	Final mass of spirit burner (g)
293.02	291.20

 ${\bf a.}$ Find the amount of heptane (mol) which has been combusted.

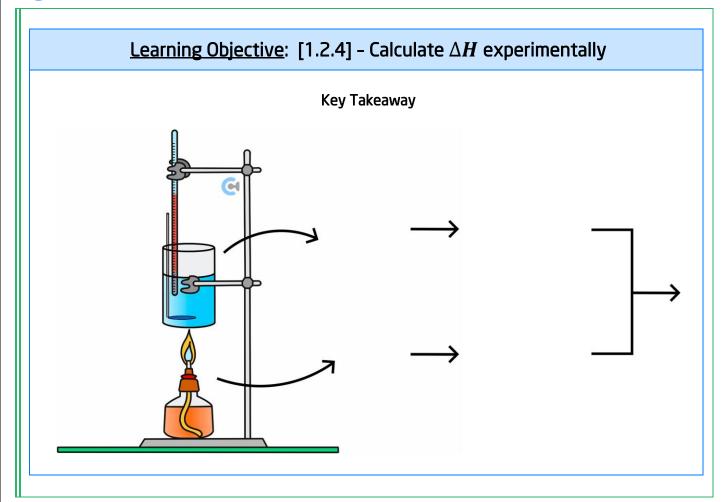

b. The temperature of the water is measured to increase from 35°C to 53°C. Find the amount of energy absorbed

©	ONTOUREDUCATION
c.	Hence or otherwise, find the heat of com

VCE Chemistry 3/4 Questions? Message +61 440 137 304

c. Hence or otherwise, find the heat of combustion heptane.
REMINDER: When asked for the heat of combustion, be sure to include the negative sign (–)!
Question 26
A chemistry student dissolves $4.51~g$ of sodium hydroxide in $100.0~mL$ of water at 19.5° C (in a calorimeter cup). As the sodium hydroxide dissolves, the temperature of the surrounding water increases to 31.7° C. Determine the heat of the solution (ΔH) of sodium hydroxide in J/g .
Space for Personal Notes

uestion 27 Ad	ditional Question.	
A chemistry student ignites a sample of $1.50~g$ of carbon at SLC, and is used to heat $300~mL$ of water up. At the end, it is found that $0.380~g$ of carbon is left over. Given that the final temperature is 54.3° C, find the heat of combustion in kilojoules per mole.		
ace for Perso	onal Notes	



Contour Check

<u>Learning Objective</u> : [1.2.1] - Apply $q = \Delta H imes n$ to energy released						
Key Takeaways						
□ Тос	To convert between mass and moles,					
☐ Tof	To find energy released by a fuel, use the Data Book, and the formula					
Learning Objective: [1.2.2] - Apply ΔH in kJ/mol , kJ/g and kJ/mL to energy calculations						
		Key Takeaways				
☐ The	$lue{\Box}$ The heat of combustion ΔH value can be calculated the following ways:					
	<u>ΔH (kJ/mol)</u>	<u>ΔΗ (kJ/g)</u>	<u>ΔΗ (kJ/mL)</u>			
Density is used to convert between mass and volume:						
<u>Learning Objective</u> : [1.2.3] - Apply $q=mcAT$ to find energy absorbed						
Study Design The use of specific heat capacity of water to approximate the quantity of heat energy released during the combustion of a known mass of fuel and food.						
Key Takeaway						
■ To measure the energy absorbed by water, it can be calculated by, whereby the specific heat capacity of water is						

Space for Personal Notes				

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Chemistry ¾

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-chemistry-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 137 304</u> with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

