

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Chemistry ¾ AOS 1 Revision I [1.11]

Workbook

Outline:

[1.1] - Thermochemistry Pg 2-9		
▶ Recap		
Questions	[1.4] - Calorimetry	Pg 25-30
Additional	▶ Recap	
	Questions	
[1.2] - Energy Calculations Pg 10-17	Additional	
▶ Recap		
Questions	[1.5] - Fuels	Pg 31-38
Additional	▶ Recap	
	Question Set A	
[1.3] - Gas Calculations & Stoichiometry Pg 18-24	Question Set B	
▶ Recap	Additional	
Questions		
Additional		

Section A: [1.1] - Thermochemistry (18 Marks)

Sub-Section: Recap

Cheat Sheet

[1.1.1] – Identify delta $H \& E_a$ in endothermic/exothermic energy profile diagrams

Endothermic reactions	Exothermic reactions	
[Absorb]/[Release] thermal energy.	[Absorb]/[Release] thermal energy.	
Energy conversion:	Energy conversion:	
Change in enthalpy (ΔH) sign is: [positive]/[negative]	Change in enthalpy (ΔΗ) sign is: [positive]/[negative]	
Reaction progress	Reaction progress	

- Energy profile diagram axis labels:
 - G Vertical axis: _____
 - Horizontal axis:

[1.1.2] – Identify differences between complete & incomplete combustion & write their thermochemical combustion equations

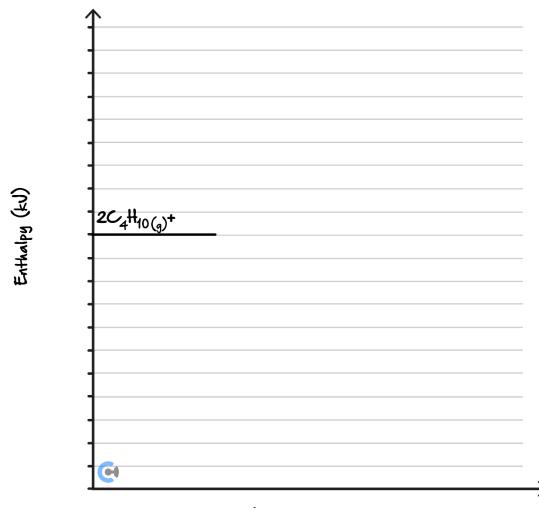
Complete combustion	Incomplete combustion
Produces	Produces
[More]/[Less] oxygen used overall.	[More]/[Less] oxygen used overall.

- Method of balancing: _____
- > State of fuels: ______.
- Thermochemical equations include _____
- The state of water in thermochemical equations is _____ when using the databook.

[1.1.3] - Apply changing equations to thermochemical equations & energy profile diagrams

- When reversing the equation, the:
 - **Θ** Δ*H*: _____
 - **G** E_a:_____
- When multiplying the equation by some coefficient:
 - **Θ** Δ*H* value: _____
 - ΔH units: _______

Let's Walkthrough Together!


Question 1 (5 marks) **Walkthrough.**

Butane can be found in gas canisters for barbeques.

a. Write the thermochemical equation for the complete combustion of butane. (2 marks) [1.1.2]

It is known that the activation energy for the reaction is 760 $kJ \ mol^{-1}$ of butane completely combusted.

b. On the axes provided below, sketch the energy profile diagram for the complete combustion of two moles of butane. Indicate on the diagram the ΔH and the activation energy. (3 marks) [1.1.1] [1.1.3]

Progress of reaction

Sub-Section: Questions

INSTRUCTION: 11 Marks. 11 Minutes Writing.

Ou	estion	2	(3	marks)
V	COLIGIA	_	(-	man	,

a. Write the thermochemical equation for the complete combustion of ethanol. (2 marks) [1.1.2]

b. The thermochemical equation for the reaction between hydrogen gas and chlorine gas to form hydrogen chlorine gas is shown below:

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$
 $\Delta H = -185 \text{ kJ mol}^{-1}$

Alternatively, hydrogen chlorine gas can decompose and produce hydrogen gas and chlorine gas. Write the balanced thermochemical equation for this reaction. (1 mark) [1.1.3]

Question 3 (1 mark) [1.1.1]

In the combustion of methane, the activation energy corresponds to:

- **A.** The energy required to convert products back into reactants.
- **B.** The energy difference between reactants and products.
- **C.** The energy needed to break the bonds in the reactants.
- **D.** The total heat released in the reaction.

Question 4 (1 mark) **[1.1.1]**

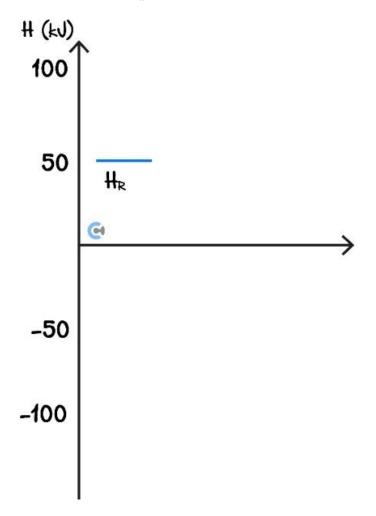
In the combustion of butane, what happens to the energy levels of reactants and products?

- **A.** Products have higher energy than reactants.
- **B.** Reactants and products have the same energy.
- C. Reactants have higher energy than products.
- **D.** Energy difference is zero as no energy is exchanged.

Question 5 (1 mark) [1.1.2]

Write the equation number for each of the equations which shows the incomplete combustion of methane.

- ► Equation 1: $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$
- ► Equation 2: $2CH_4(g) + 3O_2(g) \rightarrow 2CO(g) + 4H_2O(l)$
- ► Equation 3: $CH_4(g) + O_2(g) \rightarrow C(s) + 2H_2O(l)$
- ► Equation 4: $2CH_4(g) + \frac{7}{2}O_2(g) \rightarrow CO_2(g) + CO(g) + 4H_2O(l)$


Question 6 (4 marks)

Chlorine trifluoride, CIF₃, is produced by reacting chlorine and fluorine gases according to the following:

$$Cl_2(g) + 3F_2(g) \rightarrow 2ClF_3(g)$$
 $\Delta H = -160 \text{ kJ mol}^{-1}$

The activation energy for the forward reaction is $50 \, kJ \, mol^{-1}$.

a. Sketch an energy profile for the reaction on the axes below. Mark the enthalpy of the products (H_P) , the change in enthalpy (ΔH) and the activation energy (E_a) of the reaction. (2 marks) [1.1.1]

b. For the reaction $4\text{ClF}_3(g) \rightarrow 2\text{Cl}_2(g) + 6\text{F}_2(g)$, determine: (2 marks) [1.1.3]

ΔH	E_a

Question 7 (1 mark) **[1.1.2]**

Ethanal (CH₃CHO) rapidly decomposes at 500°C according to the following equation:

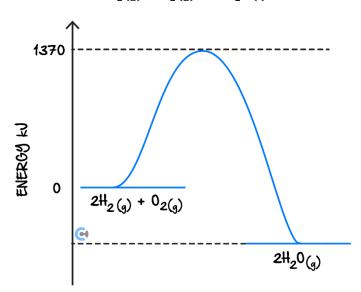
$$CH_3CHO(g) \rightarrow CH_4(g) + CO(g)$$

The activation energy for the forward reaction is 190 $kJ \ mol^{-1}$. The activation energy for the reverse reaction is 210 $kJ \ mol^{-1}$.

The enthalpy change (in $kI \ mol^{-1}$) of the forward reaction is:

- **A.** -400
- **B.** -20
- C. +20
- **D.** +400

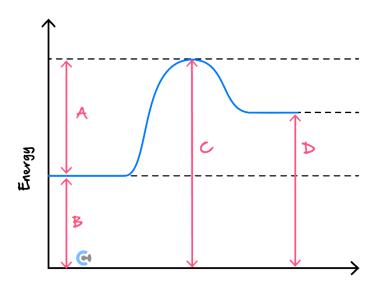
Space	tor	Personal	Notes


Sub-Section: Additional

Question 8 (1 mark) [1.1.1]

Shown below is some of the energy profile information for the reaction described by the equation:

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$$


When the bonds between oxygen and hydrogen atoms form in 2 mol H_2O molecules:

- **A.** 1370 kJ of energy is absorbed.
- **B.** 286 *kJ* of energy is released.
- **C.** 572 *kJ* of energy is absorbed.
- **D.** 1942 kJ of energy is released.

Question 9 (1 mark) **[1.1.3] [1.1.1]**

An energy profile for a reversible chemical reaction is represented below.

According to this profile, the activation energy of the reverse reaction is equal to:

- **A.** D
- **B.** C B
- C. A B
- **D.** C − D

Section B: [1.2] - Energy Calculations (22 Marks)

Sub-Section: Recap

Cheat Sheet

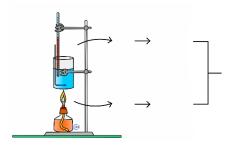
	Single Printer Control
4	TORRING E SOLD STATE A
	Market Committee Character
	EXUTE STATE
Į	

[1.2.1] - Apply $q = \Delta H \times n$ to energy released

- To convert between mass and moles, _____
- To find energy released by a fuel, use the Data Book, and the formula

[1.2.2] – Apply ΔH in kJ/mol, kJ/g and kJ/mL to energy calculations

The heat of combustion ΔH value can be calculated in the following ways:


<u>ΔH (kJ/mol)</u>	<u>ΔΗ (kJ/g)</u>	<u>ΔH (kJ/mL)</u>

Density used to convert between mass and volume:

[1.2.3] - Apply $q = mc\Delta T$ to find energy absorbed

To measure the energy absorbed by water, it can be calculated by ______, whereby the specific heat capacity of water is _____.

[1.2.4] - Calculate $\triangle H$ experimentally

[1.3.1] – Identify changes to minimise heat loss & calculate percentage efficiency

Percentage Efficiency:

% *eff* = _____

- When finding theoretical ΔH from experimental ΔH , [multiply]/[divide] by percentage efficiency.
- Systematic error links to [accuracy]/[precision] is how
- Random error links to [accuracy]/[precision] which is how
- To minimise heat loss:
 - **@** _____
 - G
 - **(4)**
 - **G**

$$x = \frac{y}{z}$$

- \blacktriangleright Direct Proportionality: $x \propto y$
 - **G** If *x* doubles, *y* ______.
- ► Inverse Proportionality: $x \propto \frac{1}{z}$
 - **!** If *x* doubles, *z* ______.

Question 10 (3 marks) [1.2.1] [1.2.2] Walkthrough.
The density of octane is known to be $0.703 \ g \ mL^{-1}$. A sample of $12.0 \ L$ of octane is combusted at SLC.
Find the energy released in <i>MJ</i> .
Question 11 (4 marks) Walkthrough.
A sample of ethanol in a spirit burner which initially weighs $198.30~g$ undergoes complete combustion. After the combustion is complete, it is found that the spirit burner weighs $196.09~g$. The heat energy released is used to heat $150~mL$ of water at SLC. The temperature of the water rises to 89.60° C.
a. Calculate the experimental heat of combustion of ethanol in kJ/mol . (3 marks) [1.2.4]

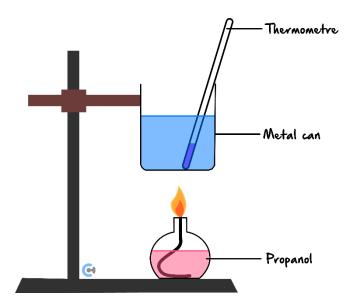
VCE Chemistry 3/4 Questions? Message +61 440 137 304

b.	Find the percentage efficiency. (1 mark) [1.3.1]
Sp	ace for Personal Notes

Sub-Section: Questions

INSTRUCTION: 13 Marks. 15 Minutes Writing.

Question 12 (1 mark) [1.2.1]
Calculate the amount of energy released when $1.39 mol$ of ethanol is combusted, providing your answer in kJ .
Question 13 (1 mark) [1.2.1]
Calculate the mass of glucose required to completely combust to produce 290 kJ of energy.
·
Space for Personal Notes


Question 14 (3 marks)		
Kerosene is extracted from crude oil from fractional distillation and can be combusted to release energy.		
A sample of kerosene undergoes complete combustion at SLC to release 120 kJ of energy.		
a. Find the volume, in mL , of kerosene that was combusted. (1 mark) [1.2.2]		
b. The energy is used to heat up a 1.25 <i>L</i> sample of water at SLC. Find the final maximum temperature reached by the water. (2 marks) [1.2.3]		
Question 15 (3 marks) [1.2.1] [1.2.2]		
The density of methanol is $0.791 \ g/mL$. Find the volume of methanol required to release $40.2 \ kJ$ of energy.		
"		
Space for Personal Notes		

Question 16 (5 marks)

0.572~g of propanol (C_3H_7OH) undergoes complete combustion in a spirit burner. The heat energy released is used to heat 100~mL of water. The temperature of the water rises from $26.0^{\circ}C$ to $49.8^{\circ}C$.

The setup used is shown below:

b.	The	e calculated heat of combustion in part a. is only 45.0% efficient.
	i.	Find the theoretical heat of combustion of the propanol. (1 mark) [1.3.1]
	ii.	Which of the following changes to the experiment could be made in order to produce a more accurate result? (1 mark) [1.3.1]
		I. Using a glass beaker in place of the metal can.
		II. Loosely wrapping the assembled equipment in aluminium foil.
		III. Placing a lid on the vessel containing the water.
		A. I or II only
		B. I or III only
		C. II or III only
		D. I, II or III
Sc	ace	for Personal Notes

Check off any learning objectives that obtained full marks from the "Contour Check" booklet!

Sub-Section: Additional

Question 17 (1 mark) **Additional Question.**

If 0.108 moles of a certain fuel are burnt and $30.5 \, kJ$ are released, what is the chemical formula of this fuel likely to be?

- A. Methanol
- **B.** Ethane
- C. Hydrogen
- D. Octane

Question 18 (1 mark) **Additional Question.**

The complete combustion of 0.12 mol of a particular fuel is found to require 0.42 mol of oxygen gas.

The fuel is likely to be:

- A. Methane
- **B.** Ethane
- C. Ethanol
- D. Butane

Section C: [1.3] - Gas Calculations & Stoichiometry (20 Marks)

Sub-Section: Recap

<u>Che</u>	at Sheet	
 [1.3.2] - Apply n = V/V_m to calculate volumes of gas at SLC ▶ Gas Law at SLC Equation/Formula: Molar Volume at SLC value: [1.3.3] - Apply m-m, m-v, v-v stoichiometry to calculation questions with equations ▶ Stoichiometry calculations are done using the coefficients as 	Finding limiting reagents steps:1.	the amount
 Mass-Volume stoichiometry steps: 1. Find the moles of substance using: 2. Find the moles of other substances using: 3. Find the volume of other substances using: 	Amount of excess reagent left over:	
Volume-Volume stoichiometry conditions: G G C G C O C O C O C O C O C O C O C		

Let's <u>Walkthrough</u> Together!

Question 19 (2 marks) [1.3.2] [1.3.3] Walkthrough.
When an acid is split on baking soda, the following reaction can occur:
$Na_2CO_3(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l) + CO_2(g)$
Given that $10.0 L$ of carbon dioxide was observed to be formed, find the mass of hydrochloric acid which must have reacted.

Space for Personal Notes			

Sub-Section: Questions

INSTRUCTION: 11 Marks. 12 Minutes Writing.

Question 20 (2 marks)	
For the following two scenarios, assume everything occurs at SLC.	
a. Find the mass (g) of 4.00 L of chlorine gas (Cl_2) . (1 mark) [1.3.2]	
b. Find the volume that 13.0 <i>g</i> of hydrogen gas occupies. (1 mark) [1.3.2]	

Space	tor	Personal	Notes

Question 21 (5 marks)

There is 16.5 g of hexane available in the following equation:

$$C_6H_{14}(l) + \frac{19}{2}O_2(g) \rightarrow 6CO_2(g) + 7H_2O(l)$$

a. Calculate the volume of carbon dioxide that would be evolved at SLC. (2 marks) [1.3.2] [1.3.3]

b. Calculate the volume of water vapour produced at SLC. (1 mark) [1.3.3]

c. What is the mass of oxygen gas that reacts? (2 marks) [1.3.3]

Question 22 (4 marks)
Ammonia can be produced by nitrogen gas and hydrogen gas during the Haber process. The reaction is shown below:
$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
A sample of 250 mL of nitrogen gas is mixed with 600 mL of hydrogen gas at SLC.
a. Determine the excess reagent. (1 mark) [1.3.4]
b. Assuming the reaction goes to completion, find the total volume of gases present after the reaction is completed and is returned to SLC. (3 marks) [1.3.3] [1.3.4]

<u>Check off</u> any learning objectives that obtained <u>full</u> marks from the "<u>Contour Check</u>" booklet!

R

Sub-Section: Additional

Question 23 (2 marks) [1.2.1] [1.3.2]
Find the amount of energy released when 34.6 L of butane (C_4H_{10}) is combusted at SLC.
Question 24 (5 marks)
The complete combustion equation for propane at SLC is shown below:
$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$

a.	Calculate the energy released by the combustion of 0.750 <i>mol</i> of propane. (1 mark) [1.2.1]
----	--

b.	Calculate the volume of carbon dioxide, measured at SLC, produced for every 200 kJ of energy released. (2 marks) [1.2.1] [1.3.2] [1.3.3]

VCE Chemistry 3/4 Questions? Message +61 440 137 304

		- 11
c.	Calculate the energy released when 2.50 g of water is produced. (2 marks) [1.3.3]	
Sp	pace for Personal Notes	
Ī		

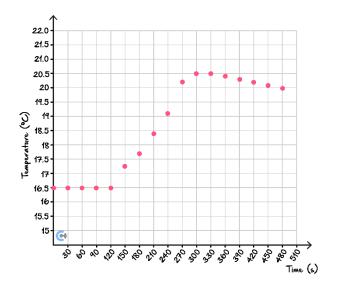
Section D: [1.4] - Calorimetry (15 Marks)

Sub-Section: Recap

Cheat Sheet

[1.4.1] – Calculate the Calibration Factor via Electrical and Chemical Calibration ($CF = E/\Delta T$)

- Calorimeters are used to minimise heat loss.
- Heat is transferred directly to water.


Electrical Calibration	Chemical Calibration

[1.4.2] – Apply Calibration Factor to Find Energy Released $(E = CF \times \Delta T)$

- Calorimetry Calculation Steps:
 - 1. Find _____ (chemical/electrical) $(E = VIt \text{ or } E = \Delta H \times n).$
 - 2
 - כ
 - 4.

[1.4.3] - Apply Temperature-Time Graphs to Calorimetry

- \blacktriangleright Find ΔT by ______
- For the following temperature-time graph, the temperature change is as labelled:

If the calorimeter has poor insulation, it has a [higher]/ [lower] calibration factor.

Let's <u>Walkthrough</u> Together!

Question 25 [1.4.1] [1.4.2] Walkthrough.		
A solution calorimeter was calibrated by reacting 0.053 mol of nitric acid (HNO ₃) $\Delta H = -21.30 kJ/g$ at 20.00°C. The temperature of the water in the calorimeter increased to 23.50°C during the calibration.		
This calorimeter was then used to determine the heat content of a sample of Doritos. 25.00 g of Doritos were reacted in the calorimeter and the temperature of the water in the calorimeter rose by 4.9°C. Calculate the energy content of the Doritos in kJ g^{-1} .		
Space for Personal Notes		

Sub-Section: Questions

INSTRUCTION: 9 Marks. 9 Minutes Writing.

0	26 (1		F1 / 11
Question	2 6 ()	mark)	11.4.11

A bomb calorimeter was calibrated using a constant current of 3.40~A for 5.00 minutes. The voltage was 3.85~V. The temperature increased from 19.5° C to 22.1° C.

Find the calibration factor.

Question 27 (5 marks)

A strip of zinc weighing 25.0 g is added to excess copper (II) sulfate, which reacts according to the following reaction:

$$\mathrm{Cu}(\mathrm{SO}_4)_2(\mathrm{aq}) + \mathrm{Zn}(\mathrm{s}) \to \mathrm{Zn}(\mathrm{NO}_3)_2(\mathrm{aq}) + \mathrm{Cu}(\mathrm{s}) \qquad \Delta H = -115 \ kJ \ mol^{-1}$$

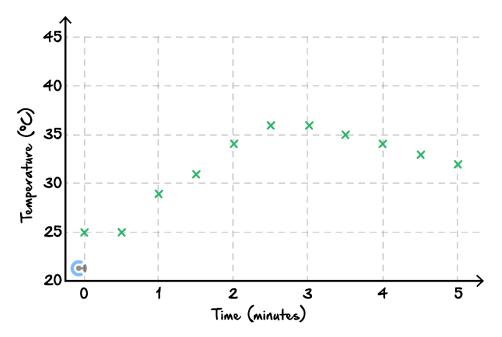
The temperature of the system increases from 28.3°C to 35.7°C.

a. Find the calibration factor in $kJ \, {}^{\circ}C^{-1}$. (2 marks) [1.4.1]

A sample of 30.4 g ammonium nitrate is then dissolved in the calibrated calorimeter according to the following equation:

$$NH_4NO_3(s) \rightarrow NH_4^+(aq) + NO_3^-(aq)$$

When this occurs, the temperature decreases from 30.0°C to 28.1°C.


b.	Using the calibration factor obtained in part a. , find the change in enthalpy of the dissolution of ammonium nitrate in water in $kJ \ mol^{-1}$. (3 marks) [1.4.2]		

Space	for	Personal	Notes
Space		i Ci Soriai	140163

Question 28 (3 marks) [1.4.3]

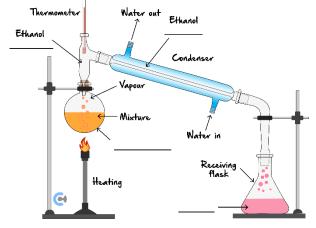
To more accurately find the calibration factor of a calorimeter, Jayden plots the following temperature-time graph. He reacts some nitrogen dioxide (NO_2), which is known to have a change in enthalpy of $-15.29 \, kJ/g$.

Find the calibration factor, if 2.00 mol of nitrogen dioxide is reacted.

<u>Check off</u> any learning objectives that obtained <u>full</u> marks from the "<u>Contour Check</u>" booklet!

Sub-Section: Additional

Qu	Question 29 (6 marks)		
Saı	ah is	investigating calorimeters and plays around with one having hydrogen gas.	
a.		calorimeter is calibrated starting at SLC by passing 7.50 <i>V</i> at a current of 3.20 <i>A</i> for 2.30 minutes. The perature rises to 32.0°C. Find the calibration factor. (1 mark) [1.4.1]	
b.		ample of hydrogen gas (H ₂) is completely combusted at SLC in the calorimeter, whereby the temperature is a to increase to 47.0°C.	
	i.	Find the mass of hydrogen gas which has been combusted. (2 marks) [1.2.1]	
	ii.	Find the volume of hydrogen gas that was present in mL . (2 marks) [1.3.2]	
c.	the	arns out that as Sarah was in a rush, she misread the voltage in part a. during calibration, and when she did calculations herself, she used a voltage of 1.50 <i>V</i> instead. Describe the effect this has on the volume of gas she obtains compared to your answer in part b. ii. (1 mark) [1.4.1]	



Section E: [1.5] - Fuels (25 Marks)

Sub-Section: Recap

<u>Sheet</u>

<u>Cheat</u>
[1.5.1] - Explain the Production of Biofuels (Biogas, Bioethanol & Biodiesel)
▶ Biogas: Comprised of and CO₂(g).
Formation: by by of organic materials.
▶ Bioethanol: Comprised of C ₂ H ₅ OH.
Formation: of of
Equation: $C_6H_{12}O_6(aq)$ \xrightarrow{yeast}
Biodiesel: Comprised of
Formation: reaction of plant/animal fats and oils.
Distillation Process: Mixture is heated to
Target Temperature: Temperaturetwo substance's boiling points.
During the distillation of the ethanol and water mixture, [ethanol]/[water] evaporates first.

Purpose of Distillation: _ upon combustion of ethanol as less water is present.

[1.5.2]	<u> 1 - Identify & Explain Differences Between Fossil Fu</u>	uels
& Biof	fuels with Reference to Renewability, Heat of	
Combi	ustion & Carbon Neutrality	

>	Renewable fuel can be replenished by
	within a

- A fuel which already has some oxygens in the molecular formula is _
- This results in a [higher]/[lower] heat of combustion.
- Biogas, bioethanol and biodiesel are considered to be carbon neutral as the CO₂ released upon use is previously absorbed via_
- However, they are not 100%carbon-neutral due to _____ and ___

[1.5.3] - Write Cellular Respiration & Photosynthesis **Equations**

- Cellular respiration is the process by which humans
- Cellular Respiration equation:
- Photosynthesis equation:

1.5.4] - Calculate Energy Obtained from Foods & Compare the Energy Values Between Carbohydrates, Proteins, and Fats

- Energy obtained from foods can be calculated by the
- Humans [can]/[cannot] obtain energy from cellulose.
- Fats have the [highest]/[lowest] energy content of all food classes because it is [more]/[less] partially oxidised.

VCE Chemistry ¾ Questions? Message +61 440 137 304

Sub-Section: Question Set A

INSTRUCTION: 9 Marks. 9 Minutes Writing.

Question 30 (1 mark) [1.5.3]	
Write the balanced equation that shows how plants obtain glucose.	

Question 31 (7 marks)

a.	Compare the environmental impact of CH ₄ obtained from landfills to the environmental impact of
	CH ₄ obtained from natural gas, with reference to green chemistry principles. Use Item 26 (ii) of the Data
	Book. (2 marks) [1.5.1]

b.	Octane can also be compared to bioethanol.		
	i.	State the process by which octane can be obtained from crude oil. (1 mark) [1.5.1]	
	ii.	Explain why bioethanol is considered to be 'carbon neutral' but octane from crude oil is not. (2 marks) [1.5.2]	
	iii.	Compare the amount of energy released if an equal mass of bioethanol and octane is combusted. Explain the reasoning for this difference. (2 marks) [1.5.2]	
Qu	Question 32 (1 mark) [1.5.4]		

The human body cannot obtain any energy from the polysaccharide cellulose. This is because:

- **A.** Cellulose is not present in any of the foods we eat.
- **B.** The gut cannot absorb the molecules produced from the digestion of cellulose.
- C. The molecules produced from the digestion of cellulose are unable to be oxidised in human body cells.
- **D.** The human body lacks the enzymes required to digest cellulose.

Sub-Section: Question Set B

INSTRUCTION: 9 Marks. 9 Minutes Writing.

Ωı	Question 33 (5 marks)			
Ųι	Question 33 (3 marks)			
Bio	Bioethanol and biodiesel are two biofuels that can be compared.			
a.	. How they are formed is compared.			
	i.	Explain how biodiesel is made. (1 mark) [1.5.1]		
	ii.	Explain how bioethanol is formed. Write any equation(s) that are relevant. (3 marks) [1.5.1]		
b.		nich of the following statements accurately distinguishes between bioethanol and biodiesel based on their dstock? (1 mark) [1.5.1]		
	A.	Bioethanol is exclusively produced from animal fats, while biodiesel is produced from plant sugars.		
	B.	Both bioethanol and biodiesel are primarily produced from fossil fuels.		
	C.	Bioethanol is typically produced from plant sugars or starches, while biodiesel is made from vegetable oils or animal fats.		
	D.	Bioethanol and biodiesel are both derived from natural gas.		

Question 34 (1 mark) [1.5.1]

What is the primary advantage of using biogas over bioethanol and biodiesel?

- **A.** Biogas production requires no water.
- **B.** Biogas can be produced from a wide variety of organic wastes, including agricultural waste, manure, municipal waste, and plant material.
- C. Biogas has a higher energy content per litre compared to bioethanol and biodiesel.
- **D.** Biogas production is completely carbon neutral.

Question 35 (3 marks)

A food label contains the following data:

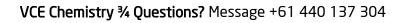
Food Type	Mass present (g) in one serving
Fats	1.50 <i>g</i>
Glucose	3.00 <i>g</i>
Protein	5.50 <i>g</i>
Cellulose	0.900 g
Oils	1.20 g

a.	State and justify whether the majority of the energy contained in the food is from lipids (fats & oils), proteins or carbohydrates. (2 marks) [1.5.4]					

VCE Chemistry 3/4 Questions? Message +61 440 137 304

b.	Find the total amount of energy contained in one serving of the food. (1 mark) [1.5.4]

<u>Check off</u> any learning objectives that obtained <u>full</u> marks from the "<u>Contour Check</u>" booklet!


Space for Personal Notes		

Sub-Section: Additional

Question 36 (7 marks)		
a.	Describe the production of bioethanol, including an equation to show how it is formed. (2 marks)	
b.	Why is ethanol sourced from crude oil considered to be a fossil fuel, but ethanol sourced from bioethanol is considered a biofuel? (2 marks)	

c. i.	How much energy would be produced by completely combusting the contents of a full 50.0 <i>L</i> biogas container at SLC given that 60.0% of the biogas is methane and the rest is carbon dioxide? (2 marks)
ii.	If the composition were 70% methane: 30% CO ₂ , would the energy released upon combustion be greater the same, or less than that in part c. i. ? No calculations are required. (1 mark)
Space	for Personal Notes

Website; contoureducation.com.au | Phone; 1800 888 300 | Email; hello@contoureducation.com.au

VCE Chemistry ¾

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

<u>1-on-1 Video Consults</u>	<u>Text-Based Support</u>
 Book via bit.ly/contour-chemistry-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 137 304</u> with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

