

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Chemistry ¾
Primary Cells & Faraday's Laws [1.10]
Test

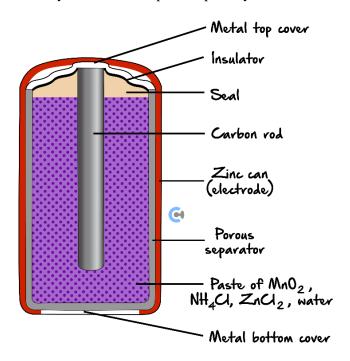
20 Marks. 1 Minute Reading. 16 Minutes Writing

Results:

Test Questions	/15
Extension	/5

Section A: Test Questions (15 Marks)

Question	1	(3	marke)
Question		L)	marksi

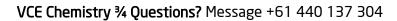

Tick whether the following statements are **true** or **false**.

		True	False
a.	Whenever a galvanic cell is mentioned, the electrolyte is stored separately for each half-cell.		
b.	Primary cells cannot be reused once they stop producing a voltage.		
c.	Electric charge is defined as how quickly charged particles such as electrons are moving.		
d.	Faraday's first law can be defined as: "The greater the electrical charge passing through the cell, the greater is the amount of chemical change witnessed in the cell".		
e.	Faraday's constant tells us that 96500 mol of e^- are present in 1 C of charge.		
f.	The greater the electrovalency (charge) on a metal ion, the less charge is required to produce the metal itself.		

Question 2 (4 marks)

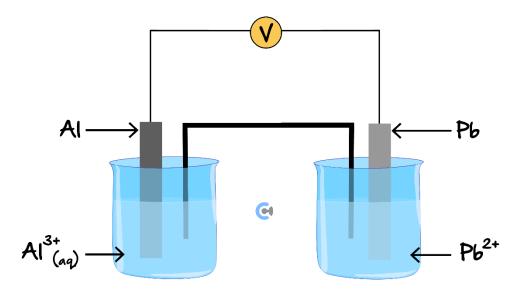
The composition of an alkaline battery, a classic example of a primary cell, is shown below:

a. Given that zinc metal turns into solid zinc oxide (ZnO), write the relevant balanced half-equation in the table below, and select whether the zinc can function as the anode or cathode. (2 marks)


Half-Equation	Electrode
	[Anode] / [Cathode]

b.	If the other half-equation involves a reaction with MnO ₂ , outline what the purpose of the carbon rod must be.
	(1 mark)

c. Suggest why the separator is porous. (1 mark)	
---	--

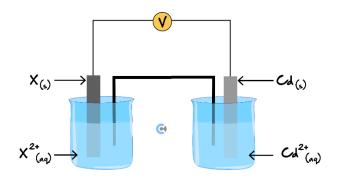


Question 3 (3 marks)		
Zoe sets up a galvanic cell in her school lab to verify Faraday's findings from decades ago.		
a. Given that 2.50 <i>A</i> are produced in the galvanic cell she sets up over a single period of class, which lasts 50 minutes, calculate the electric charge passing through the cell. (1 mark)		
 b. Had this same cell been running over a double period of class (for twice as long) with the same current, explain whether Zoe would have visibly noticed anything different about the cell. Justify your explanation 		
with reference to Faraday's laws. (2 marks)		
Space for Personal Notes		

Question 4 (5 marks)

A simple galvanic cell is shown below.

a. Write the half-equation occurring at the cathode. (1 mark)


b. Hence or otherwise, determine how the mass of the cathode would change if this cell is operated for an hour with a constant current of 2.50 *A*. (4 marks)

Space for Personal Notes

Section B: Extension (5 Marks)

Question 5 (5 marks)

The following electrochemical cell was constructed by Alannah in an attempt to determine the identity of an unknown metal X and its ion, X^{2+} .

a. If 4.82 A of current were produced fzin order for the cadmium electrode's mass to decrease by 5.264 g, calculate the time, in minutes, that this cell was running for. (3 marks)

·	 	

b. Using the information from **part a.**, and from the information given below, predict what would be observed in the electrolyte-containing X^{2+} . Justify your reasoning. (2 marks)

$$Cd^{2+}$$
 (aq) + $2e^- \leftrightarrow Cd$ (s)

$$E^0 = -0.40 V$$

EMF produced when $\rm X^{2+}/\rm X$ and $\rm Cd^{2+}/\rm Cd$ are connected in series: 0.74 $\rm \it V$

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Chemistry ¾

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via <u>bit.ly/contour-chemistry-consult-2025</u> (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 137 304 with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

