

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Chemistry ¾ Primary Cells & Faraday's Laws [1.10]

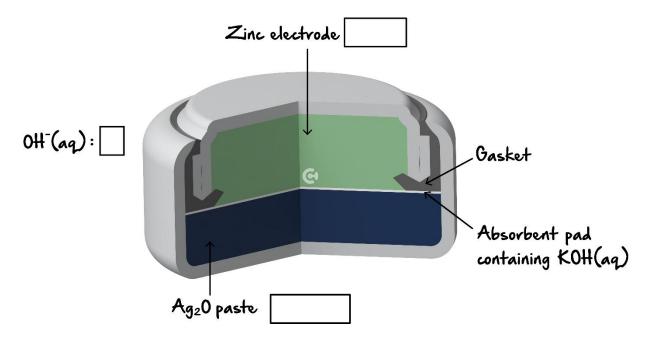
Homework

Homework Outline:

Compulsory Questions	Pg 2 – Pg 12	
Supplementary Questions	Pg 13 – Pg 20	

Section A: Compulsory Questions (32 Marks)

<u>Sub-Section [1.10.1]</u>: Identify Features of Primary Cells & how they Operate


Question 1 (3 marks)					
Manganese metal is commonly used in batteries, especially in alkaline and Manganese-carbon cells for daily consumer use.					
a.	a. By referring to information provided in the Data Book, give one reason why Manganese is used as a reactant in these galvanic cells. (1 mark)				
b.	When manganese comes into contact with water, an explosion is observed. Using the half equations, explain this observation. (2 marks)				
Space for Personal Notes					

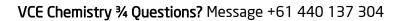
Question 2 (2 marks)

Zinc-silver oxide batteries are commonly used in watches due to their long battery life and durability.

- **a.** Label the anode and the cathode in the boxes provided above. (1 mark)
- **b.** Label the direction of movement of electrolyte in the cell in the box provided above. (1 mark)

Question 3 (3 marks)

- **a.** Which of the following statements is correct for both fuel cells and galvanic cells? (1 mark)
 - **A.** Use porous electrodes to increase the reaction surface area.
 - **B.** Require conductive electrodes.
 - **C.** Have direct energy conversions from electrical to chemical.
 - **D.** Have low energy efficiency.
- **b.** Which of the following is an advantage that primary cells have over fuel cells? (1 mark)
 - A. Lower carbon emissions.
 - **B.** Greater voltage generated.
 - C. Lower start-up time.
 - **D.** Cheaper to produce.
- **c.** Determine how a fuel cell differs from a primary cell. (1 mark)
 - **A.** Fuel cells require a continuous supply of reactants, whereas primary cells have a fixed amount of reactants.
 - **B.** Fuel cells store electrical energy, whereas primary cells generate it from chemical reactions.
 - C. Primary cells produce only water as a byproduct, whereas fuel cells produce CO_2 .
 - **D.** Primary cells can be recharged multiple times, whereas fuel cells cannot.


Sub-Section [1.10.2]: Apply Faraday's First & Second Law and $Q = It \ \& \ Q = n(e)F$ to Calculations

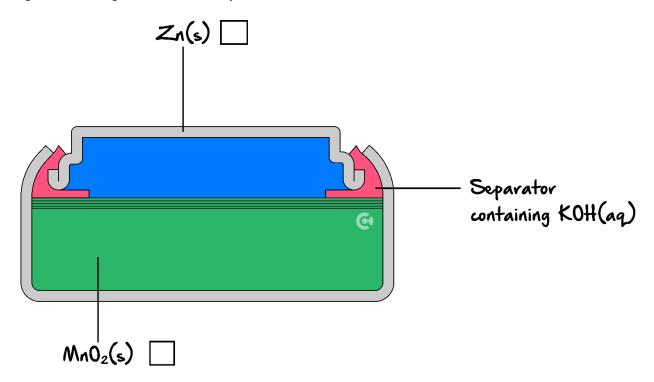
Question 4 (4 marks)			
An	swer the following questions regarding three separate galvanic cells.		
a.	In a galvanic cell, 310 <i>C</i> of electric charge passes through the circuit in 25 minutes. Calculate the current, in <i>A</i> , running through the cell. (1 mark)		
b.	In another galvanic cell, 2.56 <i>A</i> of current runs through the cell during a 15 minute period. Calculate the moles of electrons produced in the cell. (1 mark)		
c.	Calculate the moles of zinc (Zn) produced in a cell, when 2.51 A of current is running through the circuit for 35 minutes. The half equation for zinc has been provided below: (2 marks) $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$		

Question 5 (1 mark)		
Kripa has set up a Copper-Nickel galvanic cell for a school experiment.		
a. Write the half equations for the galvanic cell. (1 mark)		
b. Kripa runs the cell for 17.5 minutes and finds that 6.75 <i>A</i> of current passed through the cell. Calculate the mass of metal deposited on the electrode.		
c. The setup is reset and the experiment is run again and Kripa notices 5.65 <i>g</i> of copper produced. Given that 5.45 <i>A</i> of current was passed through the cell, calculate the time (in seconds) for which the cell was running		
Space for Personal Notes		

Question 6 (2 marks)	Í
Scott sets up a galvanic cell where chromium metal oxidises to form chromium (III) ions. Given that the change	in
nass of chromium was $4.55 g$ and the cell ran for 450 seconds, calculate the current running through the cell.	
Space for Personal Notes	

Question 7 (1 mark)
Kevin runs a galvanic cell where 4.56 <i>mol</i> of iron is formed on the cathode. Given that the moles of electrons running through the cell is 2.28 <i>mol</i> , calculate the charge of the iron ions in the cell.
Question 8 (2 marks)
Shiven sets up a galvanic cell in the school laboratory and notes that 32.4 <i>g</i> of manganese metal deposits on the electrode. Given that the amount of electrons running through the cell is 1.18 <i>mol</i> , calculate the charge of the manganese ions in the cell.
I
Space for Personal Notes

Question 9 (3 marks)
Justin runs a galvanic cell for 3.0 minutes and finds that $0.113 g$ of chromium metal has been deposited at the cathode. Given that $3.5 A$ of current was running through the cell, determine the charge of the chromium ion.
<u></u>
Space for Personal Notes


Sub-Section: The 'Final Boss'

Question 10 (10 marks)

A diagram of a Manganese-Oxide battery has been shown below.

Alina, curious about the cell, researches about it and finds some information about the half equations, which have been provided below.

$$2MnO_2(s) + H_2O(s) + 2e^- \rightarrow Mn_2O_3(s) + 2OH^-(aq)$$

$$Zn(s) + 20H^{-}(aq) \rightarrow ZnO(s) + 2e^{-} + H_2O(s)$$

- **a.** Referring to the diagram cell above:
 - i. Label the positive and negative electrodes in the boxes provided above. (1 mark)
 - ii. Explain the purpose of KOH(aq) in the cell. (1 mark)

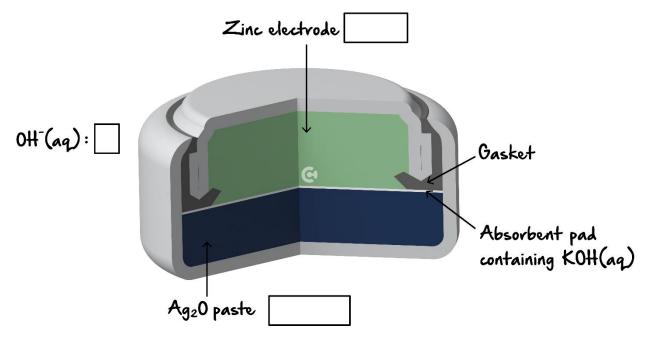
b.		nenting with the battery, Alina finds that $2.35 g$ of Mn_2O_3 is produced when the cell is running for inutes.		
	i.	Find the amount of electrons, in moles, which have passed through the circuit. (2 marks)		
	ii.	Find the current that ran through the circuit whilst the battery cell was operating. (2 marks)		
	iii.	Find the amount (in mole) of hydroxide consumed whilst the cell was running. (1 mark)		

VCE Chemistry 3/4 Questions? Message +61 440 137 304

	n e e e e e e e e e e e e e e e e e e e
c.	Manganese (Mn) can also have other charges other than Mn(II). In another setup, Alina finds that $3650 C$ of charge runs through the cell and $0.519 g$ of manganese metal is produced. Find the charge of manganese in this new cell. (3 marks)
	nace for Personal Notes
 2t	pace for Personal Notes

Section B: Supplementary Questions (25 Marks)

<u>Sub-Section [1.10.1]</u>: Identify Features of Primary Cells & how they Operate


Question 11 (3 marks)				
Sodium metal is commonly used in batteries, especially in alkaline and Sodium-carbon cells for daily consumuse.	er			
a. By referring to information provided in the Data Book, give one reason why Sodium is used as a reactant in these galvanic cells. (1 mark)				
b. When Sodium comes into contact with water, an explosion is observed. Using the half equations, explain observation. (2 marks)	- this			
	-			
	-			
	-			
Space for Personal Notes				

Question 12 (2 marks)

Zinc-Mercury Oxide batteries are commonly used commercially due to their long battery life and durability. A diagram of the cell has been provided below.

The half equations for the cell have also been provided below:

$$Zn(s) + 20H^{-}(aq) \rightarrow ZnO(s) + H_2O(l) + 2e^{-}$$

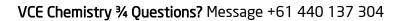
$$HgO(s) + H_2O(l) + 2e^- \rightarrow Hg(l) + 2OH^-(aq)$$

- **a.** Label the anode and the cathode in the boxes provided above. (1 mark)
- **b.** Label the direction of movement of electrolyte in the cell in the box provided above. (1 mark)

Question 13 (2 marks)

- a. What is a key feature of primary cells that allows for their commercial usage over fuel cells? (1 mark)
 - **A.** Greater efficiency in the production of energy.
 - **B.** Cheaper electrodes that reduce the overall cost of the battery.
 - **C.** Separation of reactants into two half-cells is cheaper than a constant supply of reactants.
 - **D.** Less specific electrodes that are easier to source.
- **b.** Which of the following outlines the properties required for electrodes in primary cells? (1 mark)
 - **A.** Porous, inert, catalytic, conduct electricity.
 - **B.** Reactive, catalytic, porous.
 - **C.** Conductive of electrons.
 - **D.** Porous, inert, conductive.

Space for	Personal	Notes
-----------	----------	-------



Sub-Section [1.10.2]: Apply Faraday's First & Second Law and $Q = It \ \& \ Q = n(e)F$ to Calculations

Question 14 (4 marks)				
Answer the following questions regarding three separate galvanic cells.				
a.	In a galvanic cell, 250 <i>C</i> of electric charge passes through the circuit in 20 minutes. Calculate the current, in <i>A</i> , running through the cell. (1 mark)			
b.	In another galvanic cell, 1.46 <i>A</i> of current runs through the cell during a 10.0 minute period. Calculate the moles of electrons produced in the cell. (1 mark)			
c.	Calculate the moles of zinc (Zn) produced in a cell, when 5.42 A of current is running through the circuit for 35 minutes. The half equation for zinc has been provided below: (2 marks) $Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$			

write the half equations for the galvanic cell. (1 mark)		
Write the half equations for the galvanic cell. (1 mark)		
Joanne runs the cell for 19.5 minutes and finds that 8.75 <i>A</i> of current passed through the cell. Calculate the mass of metal deposited on the electrode. (2 marks)		
The setup is reset and the experiment is run again and Joanne notices 4.55 <i>g</i> of copper produced. Given the 2.45 <i>A</i> of current was passed through the cell, calculate the time (in seconds) for which the cell was runnin for.		
Space for Personal Notes		

Question 16 (2 marks) Scott sets up a galvanic cell where chromium metal oxidises to form chromium (III) ions. Given that the change in mass of chromium was 2.55 <i>g</i> and the cell ran for 350 seconds, calculate the current running through the cell.		
	_	
e for Personal Notes		

Question 17 (1 mark)
Kevin runs a galvanic cell where 9.54 <i>mol</i> of iron is formed on the cathode. Given that the moles of electrons running through the cell is 3.18 <i>mol</i> , calculate the charge of the iron ions in the cell.
Question 18 (2 marks)
Shiven sets up a galvanic cell in the school laboratory and notes that 27.6 g of manganese metal deposits on the electrode. Given that the amount of electrons running through the cell is <i>mol</i> , calculate the charge of the manganese ions in the cell.
Space for Personal Notes

Question 19 (3 marks)	
	educed at a cathode, whereby it is found that a current of 2.75 A is produced over g of titanium metal is deposited at the cathode. Find the charge of the titanium
	uced at a cathode, whereby it is found that a current of $5.80 A$ is produced over $2 g$ of iodine metal is deposited at the cathode. Find the charge of the iodine ions.
Space for Personal Notes	

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Chemistry ¾

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	Text-Based Support
 Book via bit.ly/contour-chemistry-consult- 2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 137 304 with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

