CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Chemistry ½ Functional Groups in Organic Chemistry [2.7]

Workbook

Outline:

Carboxyl Group

Pg 2-26

- Recap
- Carbonyl Functional Group
- Introduction to the Carboxyl Group
- Double-Ended Carboxylic Acids
- Multiple Functional Groups

Isomers

Pg 45-52

- Esters Pg 27-44
- Esterification Condensation Reaction
- Naming Esters
- Drawing Ester from Name
- Ester Smells

120111612

- Ester Isomers
- Functional Isomers

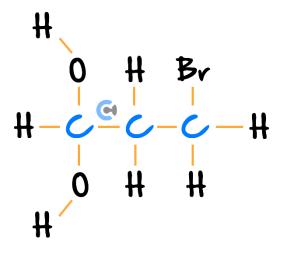
Learning Objectives:

- CH12 [2.7.1] Apply IUPAC Conventions to Identify, Draw & Write IUPAC Names of Straight-chained & Branched Carboxylic Acids
- CH12 [2.7.2] Write Condensation Reactions for the Formation of Esters & Relevant Catalysts/Conditions
- CH12 [2.7.3] Apply IUPAC Conventions to Identify, Draw & Write IUPAC Names of Straight-chained Esters

Section A: Carboxyl Group

Let's walk through first!

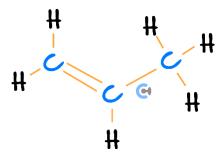
Question 1 Walkthrough.


a. Draw the structural formula of 3-methylbutan-2-ol.

b. Write the semi-structural formula of but-2-en-1-ol.

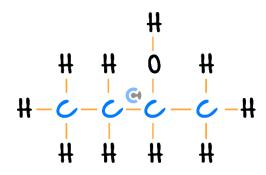
CH12 [2.7] - Functional Groups in Organic Chemistry - Workbook

c. Name the following molecule:


Your Turn!

Question 2

For each of the following molecules, provide the name for the functional group present, along with the name of the molecule.


a.

Functional Group Present	Name

b.

Functional Group Present	Name

Question 3

Name the following molecules:

a.

b.

Question 4

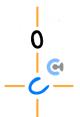
Name the following molecules:

a.

c.

b.

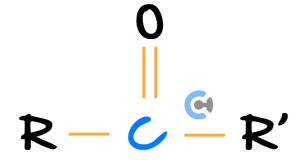
d.



Sub-Section: Carbonyl Functional Group

Context

- **Before**: Oxygen forms **single** covalent bonds.
- Now: Oxygen forms a _____ covalent bond instead!



- ► C = 0 Name: ______ group
- > Semi-structural Formula: ______

Carbonyl Group

- **Definition**: A functional group consisting of a carbon double-bonded to an oxygen atom.
- > Structure:

- R Stands for 'radical', which refers to the rest of the molecule!
- > Formula:

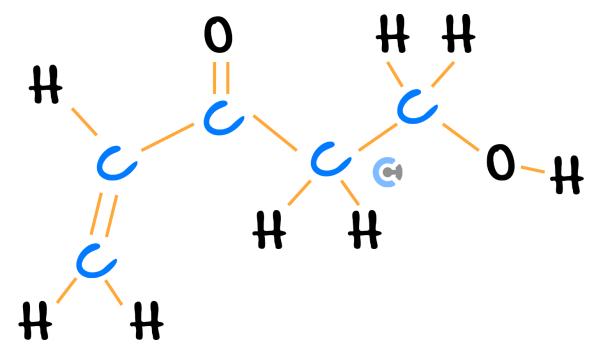
$$C = 0$$

NOTE: Carbonyl groups by themselves are not tested in VCE Chemistry $\frac{1}{2}$, but other functional groups which contain them are!

Recall!

Active Recall: Draw the carbonyl functional group.

<u>Structural Formula</u>	<u>Skeletal Structure</u>



Your Turn!

Question 5

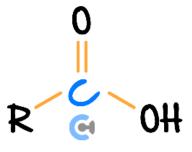
Circle and label the functional groups present in the following molecule below:

What functional groups can form from carbonyl groups?

Sub-Section: Introduction to the Carboxyl Group

Return to the carbonyl group base!

Context


Other oxygen functional groups that can be added carbonyl group:

- Result:
 - Ge If we add a hydroxyl group → _____ group.

Definition

Carboxyl group

- **Definition**: A carboxyl group involves a carbonyl group (C = 0) directly bonded to a hydroxyl group (-OH).
- Functional group: (RCOOH)

- Class of compound:
- Functional group name: ______
- > Suffix: ______
- Priority:
- ▶ General Molecular Formula:
- **Data Book**: Page 15

Exploration: Carboxylic acid

Number of carbons	1	2
<u>Name</u>		
Structural formula	H-GO-H	
Semi-structural formula	нсоон	
Skeletal formula	H OH	
<u>Molecular formula</u>	CH ₂ O ₂	$C_2H_4O_2$

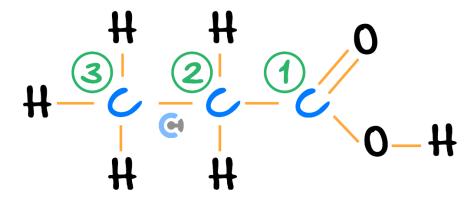
Let's have a look at more examples together!

<u>Active Recall:</u> How many covalent bonds does carbon form?

Active Recall: What is the suffix for naming carboxyl groups? What is its numbering priority?

Suffix for carboxyl functional group	Numbering Priority
	[High] / [Medium] / [Low]

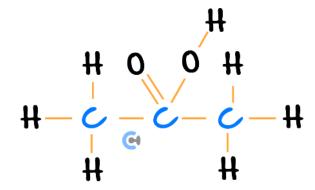
Active Recall: Draw a carboxyl group.


Structural Formula	<u>Skeletal Structure</u>

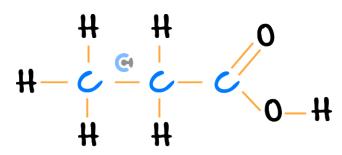
Exploration: Naming Carboxylic Acids

Consider the following molecule:

- Number the carbons according to their priority. (Label Above)
- Carboxyl Group on Carbon Number:
- Name: ______


Misconception

"The above molecule was called propan-1-oic acid:"


TRUTH:

Could the carboxyl group be attached to the central carbon, like so?

- Bonds middle carbon has:
- Carboxyl group only position: _____ of molecule.

CONTOUREDUCATION

Name:

Definition

Naming the Carboxyl Group

The location of the carboxyl group [does] / [does not] need to be specified!

Let's go through two more examples together!

${\bf Question~6~Walkthrough.}$

a. Name the following molecule:

b. For the following molecule:

i. Fill out the table:

Name	Semi-Structural Formula

ii. Draw the skeletal formula.

NOTE: The carboxyl group has the highest priority when numbering, and thus is always assigned a number priority of 1!

REMINDER: Don't forget there are no spaces in any naming part so far, only in the '-oic acid' is there is a space!

Your Turn!

Question 7

Fill in the table for the following molecules:

a.

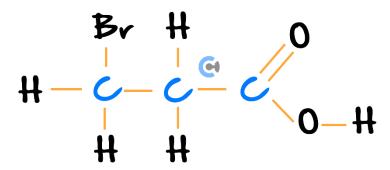
Name	Skeletal structure

b.

Name	Semi-structural formula

c. HCOOH

Name: _____


d. CH₃CH₂COOH

Name: _____

Question 8

For the following molecule:

a. Fill out the table:

Name	Semi-Structural Formula

b. Draw the skeletal formula.

Try some more questions!

Question 9

For the following molecule:

a. Fill out the table:

Name	Semi-Structural Formula

b. Draw the skeletal formula.

^	_	^
Question	1	O

Draw the skeletal structure for all possible isomers of $C_5H_{10}O_2$, given that there is a known carboxyl group present (there are 4 total). Name them all.

Isomer 1 Skeletal Structure:	Isomer 2 Skeletal Structure:
Name:	Name:
Isomer 3 Skeletal Structure:	Isomer 4 Skeletal Structure:
isomer o sheretar structure.	Isomer I sheretar structure.
Name:	Name:

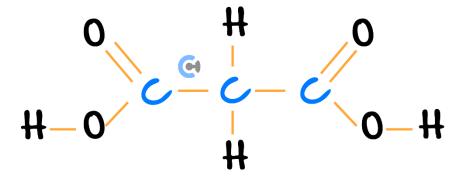
Question 11 Additional Question.

Name the following molecules:

a.

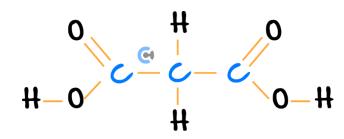
b.

NOTE: For the last molecule, as the methyl group can only be on the middle carbon, the number is omitted (redundant numbers)!



Sub-Section: Double-Ended Carboxylic Acids

<u>Discussion:</u> What is the name of the following molecule?



Name: ______

Misconception

"The following molecule is called propane-1, 3 -dioic acid"

TRUTH

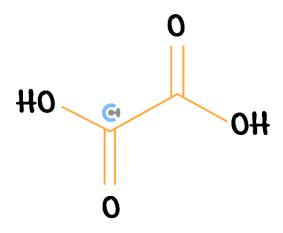
- Where must the two carboxyl groups be located on a molecule?
- Do the numbers need to be specified? [Yes] / [No]
- Actual Name: ______

Naming Double-ended carboxylic acids

As carboxyl groups must always be at the end, numbers [do] / [do not] need to be specified!

NOTE: The 'e' needs to be added whenever there's a prefix such as 'di-', 'tri-' or 'tetra-'!

Try some questions!


Question 12

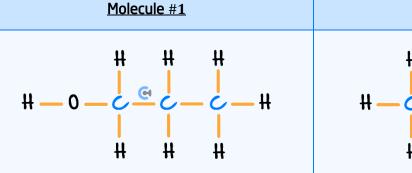
Fill in the table with the relevant information for the following molecules:

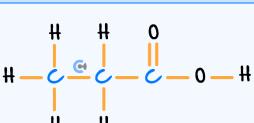
a.

Name	Molecular formula

b.

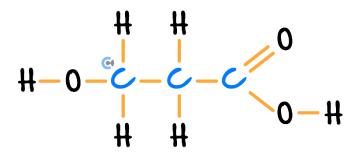
Name:




Sub-Section: Multiple Functional Groups

What happens if there is a hydroxyl group and a carboxyl group?

Exploration: Hydroxyl and carboxyl groups



Molecule #2

Name:

Name:

What if a molecule has <u>both</u> functional groups?

- Functional groups present & their suffixes: (Label Above)
- Organic molecules can have how many suffixes? ______

Functional group with priority: [Hydroxyl group (-ol)] / [Carboxyl group (-oic acid)]

Primary functional group: [Hydroxyl group (-ol)] / [Carboxyl group (-oic acid)]

Functional group which gets suffix: [Hydroxyl group (-ol)] / [Carboxyl group (-oic acid)]

How do we name the hydroxyl group?

- Instead of "-ol", hydroxyl groups are named via:
- Carbon number hydroxyl group on:
- Name: ______

Misconception

"The name of the above molecule is 3 -hydroxylpropanoic acid"

TRUTH:

Multiple Functional Groups Naming Steps

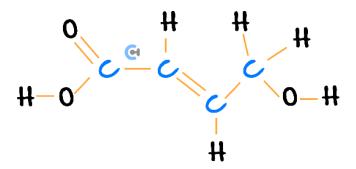
- 1. Find the primary functional group first (highest on the table in the Databook).
- 2. Primary functional group assigned: [prefix] / [suffix] naming.
- **3.** Other functional groups assigned: [prefix] / [suffix] naming.

Question 13 Walkthrough.

For the following molecule:

- **a.** Provide the IUPAC name.
- **b.** Draw the skeletal structure.

 $\underline{\textbf{REMINDER}}\text{: Don't forget that 'hydroxy-' has no 'l' at the end!}$



Question 14

Name the following molecule:

Question 15

Fill out the following information for the molecule below:

Name: _____

Skeletal Structure:

Question 16 Additional Question.

Name the following molecule:

Section B: Esters

Sub-Section: Esterification Condensation Reaction

Now that we've covered carboxyl groups in depth, let's look at the last functional group, which are esters!

Context

Ever thought about where fruits get their smells from?

Esters are responsible for their smell.

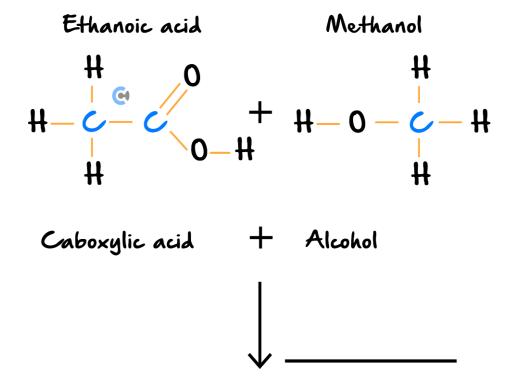
Active Recall: What is condensation?

Condensation Reaction

Definition: The combination of two molecules, which results in the **elimination of** ______ or another simple molecule.

Space for Personal Notes

27

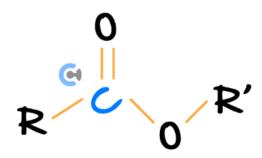


Let's have a look at the esterification reaction!

Exploration: Esterification Condensation Reaction

- _____reaction. Esterification reaction considered:
- Consider a carboxylic acid (e.g., ethanoic acid) and an alcohol (e.g., methanol) reacting together:

$Carboxylic\ Acid + Alcohol \rightarrow Ester + Water$


- Products:
- Reaction uses organic **highly concentrated** acidified catalyst sulphuric acid (H₂SO₄). *(Label Above.)*

Ester Functional Group

- **Definition**: A carbonyl group (C = 0) which is attached to an oxygen then another carbon.
- Special Feature: There must be at least one carbon attached to either side of the ester functional group!
- > Structure:

Semi-Structural Structure: R - COO - R'.

TIP: Think about an ester group as a carboxyl group with the hydrogen replaced with a carbon chain!

Let's look at a question together!

	Question	17	Walkthrough	ı.
--	----------	-----------	-------------	----

For the esterification reaction that occurs between ethanol and propanoic acid:

a. Draw structural formulae reaction.

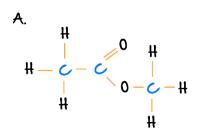
b. Draw the semi-structural formulae reaction between propan-1-ol and ethanoic acid.

TIPS: When writing a semi-structural formula, the ester will be a 'COOCH2'.

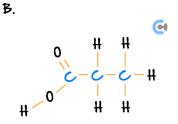
- Always write the carboxylic acid first!
- Align the hydroxyl groups (—OH) to each other!

NOTE: For esterification reactions, all states are liquid!

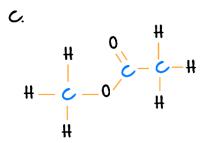
ALSO NOTE: The sulphuric acid $(H_2SO_4(I))$ is also liquid in state! Don't forget to add water (H_2O) as the by-product!


Your Turn!

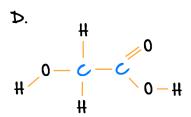
Question 18


Circle and label the primary functional group, identifying if it is a carboxyl or ester functional group.

a.


[carboxyl] / [ester] functional group

b.


[carboxyl] / [ester] functional group

c.

[carboxyl] / [ester] functional group

d.

[carboxyl] / [ester] functional group

Question 19

For the esterification reaction that occurs between ethanoic acid and ethanol:

a. Draw structural formulae reaction.

b. Circle and name the primary functional group in the product formed.

REMINDER: Don't forget to write the carboxylic acid first!

Question 20	
For the esterification reaction that occurs between propan-1-ol and methanoic acid:	
Draw structural formulae reaction.	
Space for Personal Notes	

Now, practice writing the semi-structural formula reactions!

Question 21

For each of the following, write the semi-structural formula reaction when the specified chemicals react together.

- a. Methanoic acid and propan-1-ol
- b. Ethanol and propanoic acid

NOTE: Esters are written differently forwards and backwards.

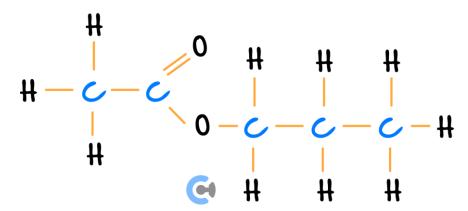
Arrangement #1	Arrangement #2
# # # O # H	H 0 H H
Name:	Name:

However, try to avoid using the second, 'backwards' formation to avoid confusion!

How do we name esters?

Sub-Section: Naming Esters

Active Recall: Which two classes of molecules combine to form ester?



Molecule #1	Molecule #2

Exploration: Naming Esters

If we consider the following ester, where is the ester functional group? (Label Below.)

- Carboxyl and Alcohol Portions: (Label Above.)
- Segment with higher priority: [Carboxylic acid] / [Alcohol]
- Esters split into a main chain and a side chain.

Main chain and Side chain portions: (Label Below.)

Length of each chain:

<u>Main Chain</u>	<u>Side Chain</u>

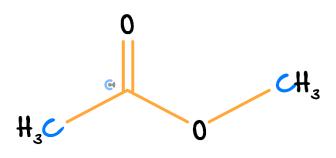
- Esters are named with the suffix ______.
- ▶ Name: ______.

Naming Esters

Definition

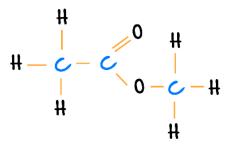
Esters split into two portions:

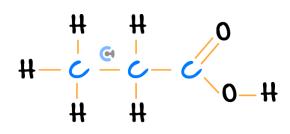
<u>Main Chain</u>	Side Chain
Originally [carboxylic acid] / [alcohol] end	Originally [carboxylic acid] / [alcohol] end
Naming:	Naming:
[Prefix] / [Suffix] of	[Prefix] / [Suffix] like alkyl groups



Question 22 Walkthrough.

Name the following ester.

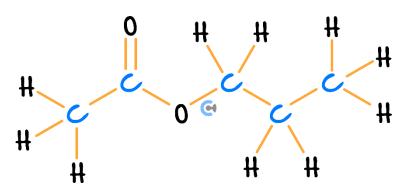

Try some questions!


Question 23

Circle and label the primary functional group in each of the following molecules.

a.

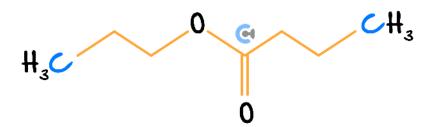
b.


c. What type of isomers are the above two molecules?

Question 24

Provide the systematic IUPAC name for each of the following molecules.

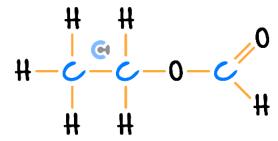
a.



b. Write the systematic name for the following molecule.

 $\mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2\mathsf{COOCH}_2\mathsf{CH}_2\mathsf{CH}_3$

Question 25


The name of the molecule shown below is:

- A. Butyl butanoate
- B. Propyl propanoate
- C. Butyl propanoate
- D. Propyl butanoate

Question 26

The systematic IUPAC name for the molecule shown above is:

- A. Ethyl propanoate
- B. Propanal
- C. Propanoic acid
- **D.** Ethyl methanoate

Sub-Section: Drawing Ester from Name

Exploration: Deriving Structure of Ester from Name

What does the ester look like?

<u>Semi-Structural Formula</u>	<u>Skeletal Diagram</u>

NOTE: Ester groups will always be by themselves - molecules with ester groups and other functional groups in addition will not be tested!

Deriving Structure of Ester from Name

Beginning Portion of name ending with '-yl'	Ending Portion of name ending with '-oate'
[Main] / [Side] chain	[Main] / [Side] chain
Attached to side with $[C = 0] / [-0 -]$	Attached to side with $[C = 0] / [-0 -]$

Let's try a question together!

Question 27 Walkthrough.

Write the semi-structural formula of ethyl methanoate.

Your Turn!

Question 28

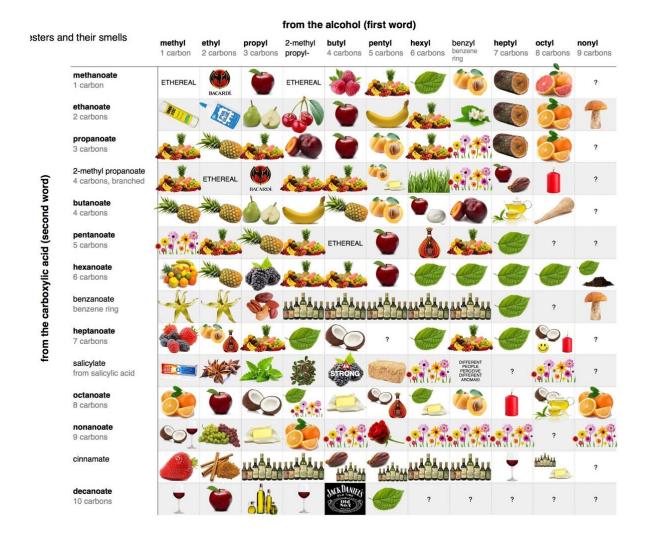
Draw the skeletal structure of butyl methanoate.

VCE Chemistry ½ Questions? Message +61 440 137 304

Question 29
Draw the semi-structural formula of pentyl ethanoate.

Question 30 Additional Question.
Write the molecular formula of methyl propanoate.
Space for Personal Notes

Sub-Section: Ester Smells


Context

- Ester Smell:
- Smell dictated by: _____ of main/side chain.

Ester Smells

Consider the table below.

NOTE: This table does not need to be memorised and will be provided if a question refers to it!

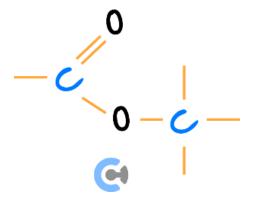
Let's try a question together!

Question 31 Walkthrough. State which esters give off a coconut smell, referring to the table provided on the previous page.		
Your	Turn!	
Question 32		
For each of the following questions, state the smell the ester gives off, referring to the table provided on the previous page.		
a. Ethyl hexanoate	b. Butyl proponate	
Question 33		
Name one ester which gives off a smell of wine, referring to the table provided on the previous page.		
Space for Personal Notes		

Section C: Isomers

Sub-Section: Ester Isomers

Context



Let's have a look at an example together!

Exploration: Isomers of esters

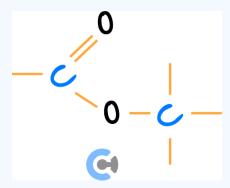
- Consider esters with molecular formula: C₄H₈O₂
- Baseline Structure:

Already has two carbons.

Possible Isomers:

Isomer 1 Structure:

Isomer 2 Structure:


Name: _____

Isomer 3 Structure:

Name: ______.

Isomer 4 Structure:

Name:

NOTE: While you will not be asked to name esters with alkyl groups on the main/side chain, you need to know of their existence!

TIP: Start with all the carbons on the main chain and slowly move the carbons across!

ue

Ester Isomers Steps:

- 1. Start with the baseline structure.
- 2. Add carbons on either side.

Your Turn!

Λ	uestion	3/
•	uestion	.74

Draw all potential isomers of a molecule with the molecular formula of $C_3H_6O_2$, given that it is known to have an ester functional group.

Question 35 Additional Question.

State the number of isomers of esters possible with the molecular formula of $C_2H_4O_2$.

Sub-Section: Functional Isomers

Exploration: Carboxyl and Ester Functional Groups

Ethanoic Acid

		_	
	#	# - -	0
#-	 	 	0 – #

Methyl Methanoate

Molecular Formula: ______.

Molecular Formula:

- Observation: Ethanoic acid and methyl methanoate have the same molecular formula.
- > Conclusion: They are ______ of each other.
- Type of Isomers: ______.

Functional Isomer

Definition: Compounds that have the same molecular formula, but different functional groups.

Let's have a look at an example together!

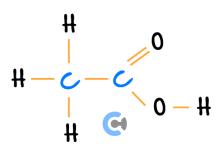
- Consider molecules with molecular formula: C₂H₄O₂
- Carboxyl isomers: (Isomer 1)

Ester isomers: (Isomer 2)

- Another functional group with oxygen in it:
- Amount of functional group is needed: ______.
- Hydroxyl Isomers: (Isomer 3 & 4)

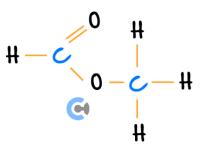
NOTE: As hydroxyl groups do not contain a C=0 double bond, they end up having more hydrogens! We 'remove' these hydrogens by including a C=0 double bond!

What type of isomers are these to each other?



Isomers with Oxygen

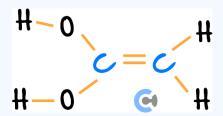
Molecules with the formula $C_2H_4O_2$ have four different isomers:


Definition

Isomer 1 Structure:

Name: Ethanoic acid

Isomer 2 Structure:


Name: Methyl methanoate

Isomer 3 Structure:

Name: Ethene-1,2-diol

Isomer 4 Structure:

Name: Ethene-1,1-diol

- lsomer 1 and Isomer 2 are ______isomers.
- lsomer 1 and Isomer 3 are ______ isomers.
- lsomer 3 and Isomer 4 are ______isomers.
- Carboxylic acids and esters have the same molecular formula.

NOTE: While exists, generally, try to find the carboxyl and ester isomers first before filling in the hydroxyl isomers with an alkenyl group!

Your Turn!

$\mathbf{\Omega}$	4	20
()	uestion	20

Draw three potential isomers of molecules with a molecular formula of C₃H₆O₂.

Contour Check

Learning Objective: [2.7.1] - Apply IUPAC conventions to identify, draw & write IUPAC names of straight-chained & branched carboxylic acids

Key Takeaways

Structural Formula	Functional Group	Class of Molecule	<u>Prefix /</u> <u>Suffix</u>
# # # # #			
H 0-H			
H-C-C-H H 0-C-H			

- As carboxyl groups must always be at the end, numbers [do] / [do not] need to be specified!
- Multiple Functional Groups Naming Steps
 - 1. Find the primary functional group first (highest on the table in the databook).
 - 2. Primary functional group assigned: [Prefix] / [Suffix] naming.
 - **3.** Other Functional Groups assigned: [Prefix] / [Suffix] naming.

□ <u>Learning Objective</u>: [2.7.2] - Write condensation reactions for the formation of esters & relevant catalysts / conditions

Key Takeaways

Condensation Reaction Produces:

Ethanoic acid

$$H = 0$$
 $H = 0$
 $H =$

□ <u>Learning Objective</u>: [2.7.3] - Apply IUPAC conventions to identify, draw & write IUPAC names of straight-chained esters

Key Takeaways

Naming Esters

<u>Main Chain</u>	<u>Side Chain</u>
Originally [carboxylic acid] / [alcohol] end	Originally [carboxylic acid] / [alcohol] end
Naming:	Naming:
[Prefix] / [Suffix] of	[Prefix] / [Suffix] like alkyl groups

Drawing Esters from Name

Beginning Portion of name ending with '-yl'	Ending Portion of name ending with '-oate'
[Main] / [Side] chain	[Main] / [Side] chain
Attached to side with $[C = 0] / [-0 -]$	Attached to side with $[C = 0] / [-0 -]$

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Chemistry ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-chemistry-consult- 2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 137 304 with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

