

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

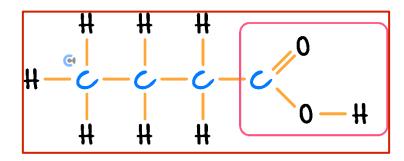
VCE Chemistry ½ Functional Groups in Organic Chemistry [2.7]

Homework Solutions

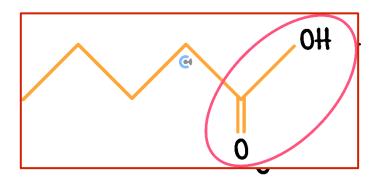
Admin Info & Homework Outline:

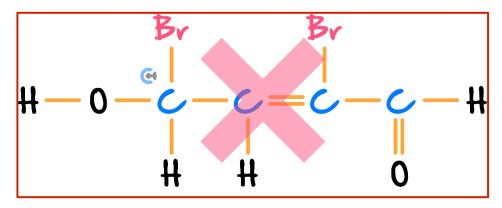
Student Name	
Questions You Need Help For	
Compulsory Questions	Pg 02 - Pg 17
Supplementary Questions	Pg 18 - Pg 31

Section A: Compulsory Questions (65.5 Marks)

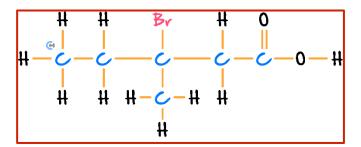


<u>Sub-Section [2.7.1]</u>: Apply IUPAC Conventions to Identify, Draw & Write IUPAC Names of Straight-Chained & Branched Carboxylic Acids

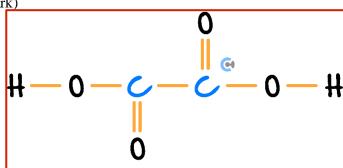

Question 1 (12.5 marks)

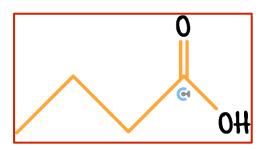

- **a.** Identify the carboxyl group in each of the organic compounds below. If there is no carboxyl group present, draw an 'X' through the compound.
 - \mathbf{i} . (0.5 marks)

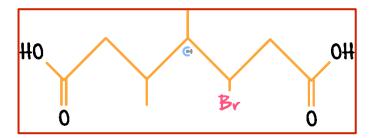
ii. (0.5 marks)



iii. (0.5 marks)

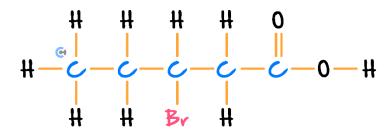



- **b.** Draw the structural formula for each of the organic compounds below.
 - i. 3-bromo-3-methylpentanoic acid. (1 mark)


ii. Ethanedioic acid. (1 mark)

- **c.** Draw the skeletal structure for each of the organic compounds below.
 - i. Butanoic acid. (1 mark)

ii. 3-bromo-4,5-dimethylheptanedioic acid. (1 mark)


- **d.** Draw the semi-structural formula for each of the organic compounds below.
 - i. 3,3-dimethylpentanoic acid. (1 mark)

______CH₃CH₂C(CH₃)₂CH₂COOH ______

ii. Butanedioic acid. (1 mark)

_______HOOCCH₂CH₂COOH

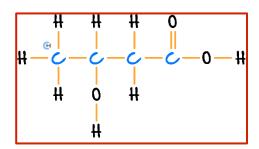
- e. Fill out the table for each of the following molecules.
 - **i.** (2 marks)

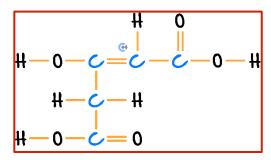
Name	Semi-structural	
3-bromopentanoic acid	CH ₃ CH ₂ CHBrCH ₂ COOH	

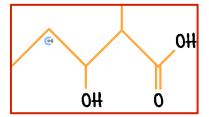
ii. (2 marks)

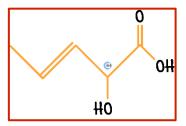
Name		Semi-structural		
Hexanoic acid			CH ₃ (CH ₂) ₄ COOH	

iii. HOOCCH(CH₃)CH₂CH₂CH₃. (1 mark)


Name: ______ 2-methylpentanoic acid ______


Question 2 (9 marks)


- **a.** Draw the structural formula for each of the organic compounds below.
 - i. 3-hydroxybutanoic acid. (1 mark)

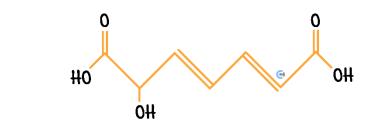

ii. 3-hydroxypent-2-enedoic acid. (1 mark)

- **b.** Draw the skeletal structure for each of the organic compounds below.
 - i. 3-hydroxy-2-methylpentanoic acid. (1 mark)

ii. 2-hydroxypent-3-enoic acid. (1 mark)

- c. Draw the semi-structural formula for each of the organic compounds below.
 - i. 2,3-dihydroxybutanoic acid. (1 mark)

_____CH₃CHOHCHOHCOOH


ii. Hexa-2,4-dienedioic acid. (1 mark)

нооссисисноон

- **d.** Name the following organic compounds.
 - **i.** (1 mark)

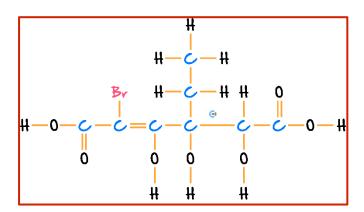
---- 3-hydroxybut-2-enoic acid

ii. (1 mark)

----- 2-hydroxyhepta-3,5-dienedoic acid ------

iii. CH₃CHCOHCH₂CH₂COOH. (1 mark)


----- 4-hydroxyhex-4-enoic acid -----


Question 3 (4 marks)

Jaldhi is studying the following organic compound.

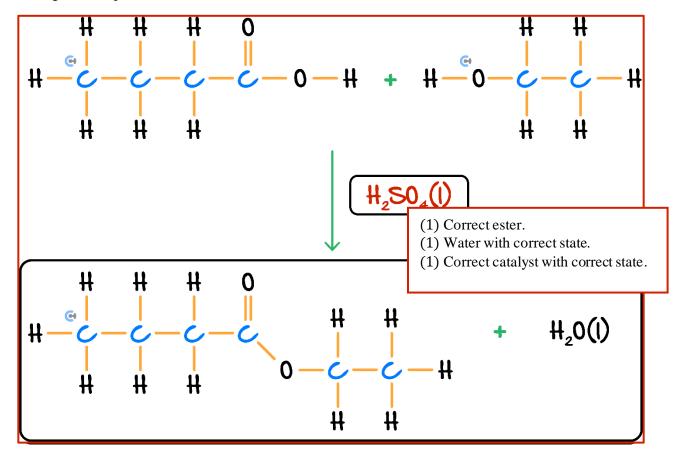
- a. On the diagram above, circle the carboxyl group(s). (1 mark)
- **b.** Draw the structural formula for the organic compound Jaldhi is studying. (1 mark)

c. Draw the semi-structural formula for the compound. (1 mark)

HOOCCBrCOHCOH(CH₂CH₃)CHOHCOOH

d. Write the IUPAC name for the compound. (1 mark)

----- 5-bromo-3-ethyl-2,3,4-trihydroxyhex-4-enedioic acid


<u>Sub-Section [2.7.2]</u>: Write Condensation Reactions for the Formation of Esters & Relevant Catalysts/Conditions

Question 4 (4 marks)

Some reactions are being investigated.

a. Complete the reaction below using the structural formula for all organic compounds. States are not required for organic compounds. (3 marks)

b. State the type of reaction in **part a.** (1 mark)

Condensation reaction (1)

Question 5 (4 marks)

Write the semi-structural formula for the esterification reaction for the following.

a. Methanoic acid and ethanol. (2 marks)

$$\label{eq:hcooh} \begin{array}{c} \text{HCOOH(l)} + \text{CH}_3\text{CH}_2\text{OH(l)} \rightarrow \text{HCOOCH}_2\text{CH}_3(l) + \text{H}_2\text{O(l)} \\ \\ \text{[Include H}_2\text{SO}_4(l) \text{above the reaction arrow]} \end{array}$$

- (1) Reaction
- (1) States & catalyst
- **b.** Propan-1-ol and ethanoic acid. (2 marks)

$$CH_3COOH(l) + CH_3CH_2CH_2OH(l) \rightarrow CH_3COOCH_2CH_2CH_3(l) + H_2O(l)$$

[Include $H_2SO_4(l)$ above the reaction arrow]

- (1) reaction
- (1) states & catalyst

Question 6 (7 marks)

a. Complete the reaction below using the semi-structural formula for any organic compounds. States are not required for organic compounds. (2 marks)

$$\mathsf{CH_3CH_2COOH} + \mathsf{CH_3CH_2CH_2CH_2OH} \xrightarrow{\mathsf{H_2SO_4(l)}} \quad \mathsf{CH_3CH_2COOCH_2CH_2CH_2CH_3} + \mathsf{H_2O(l)}$$

b. State the type of reaction in **part a.** (1 mark)

- (1) Correct alcohol & water.
- (1) Correct catalyst with correct state.

Condensation reaction (1)

- c. H₂SO₄ is sometimes called a dehydrating agent.
 - i. Explain the function of H₂SO₄ in terms of esterification reactions. (1 mark)

H₂SO₄ is a catalyst (1).

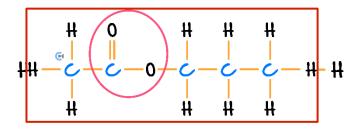
ii. Identify a safety risk associated with H_2SO_4 solutions used in esterification reactions. (2 marks)

H₂SO₄ must be concentrated for use in esterification reactions (1).

Concentrated acids may cause chemical burns if spilled onto skin. (2)

VCE Chemistry ½ Questions? Message +61 440 137 304

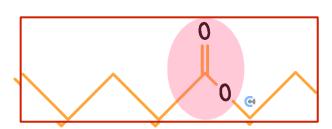
d. Name the ester formed in part a. (1 mark)				
	Butyl propanoate (1).			
Space for Personal Notes				



<u>Sub-Section [2.7.3]</u>: Apply IUPAC Conventions to Identify, Draw & Write IUPAC Names of Straight-Chained Esters

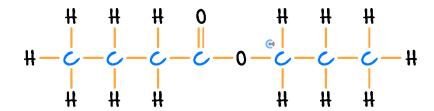
Question 7 (3 marks)

Circle the ester groups in each of the following organic compounds.


a. (1 mark)

b. (1 mark)

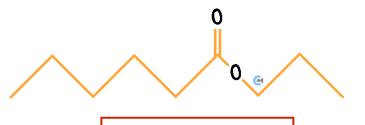
c. (1 mark)



Question 8 (4 marks)

Identify the carboxylic acid and the alcohol that are reacted to form the following esters.

a. (1 mark)



Butanoic acid - Propanol

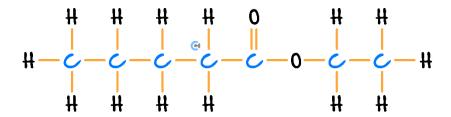
b. $CH_3CH_2COOCH_2CH_3$. (1 mark)

Propanoic acid - Ethanol

c. (1 mark)

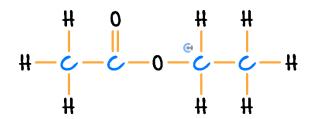
----- Hexanoic acid - Propanol

d. Hexyl pentanoate. (1 mark)


Pentanoic acid - Hexanol

Question 9 (5 marks)

- **a.** State the IUPAC name for each of the following compounds.
 - **i.** (1 mark)

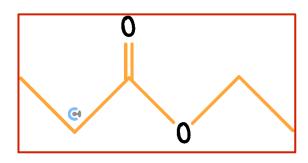


Ethyl pentanoate

ii. CH₃CH₂CH₂COOCH₂CH₂CH₂CH₂CH₂CH₂CH₃. (1 mark)

Heptyl butanoate

iii. (1 mark)


Ethyl ethanoate

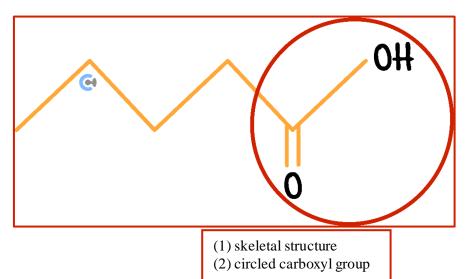
ONTOUREDUCATION

- **b.** For the following, draw the skeletal formulas.
 - i. Hexyl propanoate. (1 mark)

ii. Ethyl propanoate. (1 mark)

Sub-Section: The 'Final Boss'

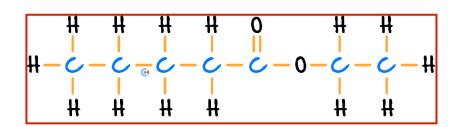
Question 10 (13 marks)

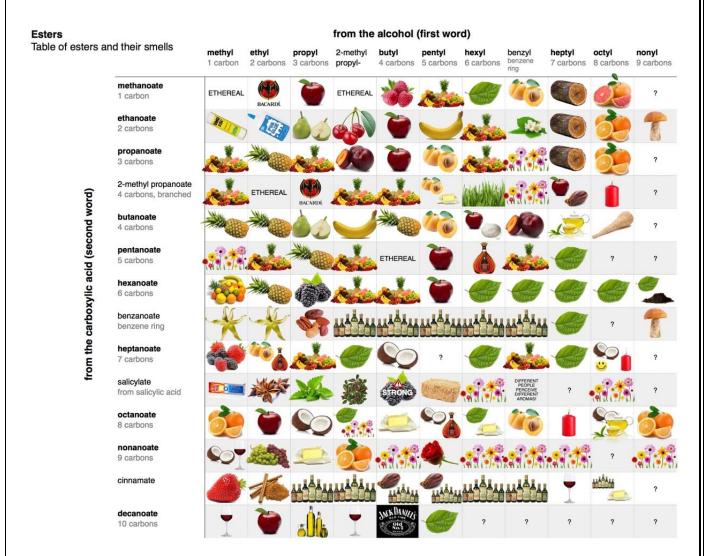

Aaron is working with some organic compounds on Ester Sunday. He decides he would like to synthesise an ester with 7 carbon atoms for the occasion.

- a. Aaron is going to use the ethanol in a bottle of vodka (which was gifted to him) to synthesise his ester.
 - i. Explain why Aaron cannot use vinegar (which is composed of ethanoic acid) to synthesise his ester. (2 marks)

Ethanoic acid has two carbon atoms. The esterification reaction between ethanoic acid and ethanol would produce an ester with four carbons (1), which is not what Aaron desires (2).

ii. Draw the skeletal structure of a potential carboxylic acid Aaron could use. Circle the carboxyl group on your drawing. (2 marks)





	$ \begin{array}{c} \text{CH}_3\text{CH}_2\text{OH} + \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{COOH} \xrightarrow{\text{H}_2\text{SO}_4(l)} \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3 + \text{H}_2\text{O}(l)} \\ \text{(1) reactants} \\ \text{(2) products (water with state)} \\ \text{(3) catalyst with correct state} \end{array} $		
•	What type of reaction is Aaron using to synthesise his ester? (1 mark)		
	Condensation reaction (1)		
	State the IUPAC name of the ester produced by the reaction in part b. i. (1 mark)		
	Ethyl hexanoate (1)		
•	With reference to relevant molecular formulae, explain why Aaron should not use hexanoic acid to synthesise the ester he desires. (2 marks)		
	Ethyl hexanoate, the product of the esterification reaction between ethanol and hexanoic acid, has the molecular formula C ₈ H ₁₆ O ₂ (1) as a result of ethanol having the		
	molecular formula C ₂ H ₆ O and hexanoic acid having the molecular formula C ₆ H ₁₂ O ₂ . Ethyl hexanoate has eight carbon atoms but Aaron only desires an ester with seven carbon atoms (2); therefore, hexanoic acid should not be used.		

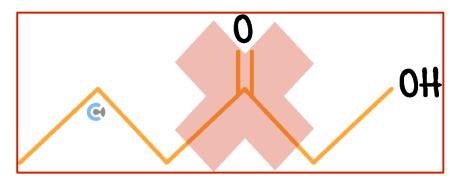
CONTOUREDUCATION

- c. After some trial and error, Aaron synthesises the ester he desires using the ethanol from his bottle of vodka.
 - i. Draw the structural formula for the ester that Aaron synthesises. (1 mark)

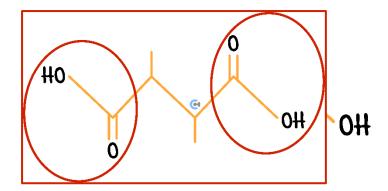
ii. Using the table above, describe the smell of the ester Aaron has synthesised. (1 mark)

 Aaron's ester has a mix of fruity smells (1)	
Note: Accept any valid description.	

Section B: Supplementary Questions (58 Marks)


<u>Sub-Section [2.7.1]</u>: Apply IUPAC Conventions to Identify, Draw & Write IUPAC Names of Straight-Chained & Branched Carboxylic Acids

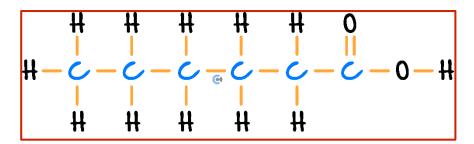
Question 11 (6 marks)



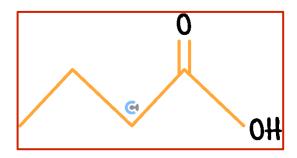
- **a.** Identify the carboxyl group in each of the organic compounds below. If there is no carboxyl group present, draw an 'X' through the compound.
 - **i.** (1 mark)

ii. (1 mark)

iii. (1 mark)



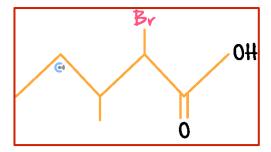
CONTOUREDUCATION

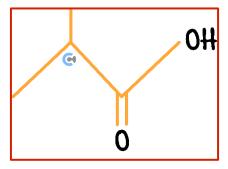

- **b.** Complete the following:
 - i. Draw the semi-structural formula for ethanoic acid. (1 mark)

----- CH₃COOH -----

ii. Draw the structural formula of hexanoic acid. (1 mark)

iii. Draw the skeletal structure of butanoic acid. (1 mark)

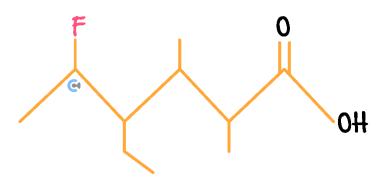

Question 12 (9 marks)


- **a.** Draw the structural formula for each of the organic compounds below.
 - i. 3-bromo-4-ethyl-2-methylhexanoic acid. (1 mark)

ii. 2,2-dimethylpropanedioic acid. (1 mark)

- **b.** Draw the skeletal structure for each of the organic compounds below.
 - i. 2-bromo-3-methylpentanoic acid. (1 mark)

ii. 2-methylpropanoic acid. (1 mark)


- **c.** Draw the semi-structural formula for each of the organic compounds below.
 - i. 2-methylbutanoic acid. (1 mark)

----- С ₃CH₂CH(CH₃)СООН

ii. 3-ethyl-4-iodopentanoic acid. (1 mark)

----- CH₃CHICH(CH₂CH₃)CH₂COOH

- **d.** Name the following organic compounds:
 - **i.** (1 mark)

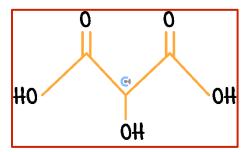
4-ethyl-5-fluro-2,3-dimethylhexanoic acid

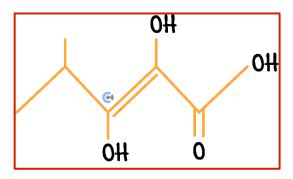
ii. (1 mark)

2,3,4-trimethylpentanoic acid

iii. HCOOH. (1 mark)

----- Methanoic acid


Question 13 (9 marks)


- **a.** Draw the structural formula for each of the organic compounds below.
 - i. 3,3-dihydroxybutanoic acid. (1 mark)

ii. 4-bromo-2,4-dihydroxybuta-2,3-enoic acid. (1 mark)

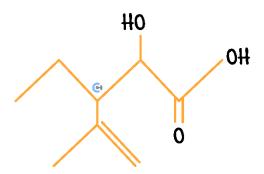
- **b.** Draw the skeletal structure for each of the organic compounds below.
 - i. 2-hydroxypropanedioic acid. (1 mark)

ii. 2-3-dihydroxy-4-methylpent-2-enoic acid. (1 mark)

CONTOUREDUCATION

- c. Draw the semi-structural formula for each of the organic compounds below.
 - i. But-3-enoic acid. (1 mark)

----- CH₂CHCH₂COOH


ii. 2,2,3,3-tetrahydroxybutanedioic acid. (1 mark)

H00CC(0H)₂C(0H)₂C00H

- **d.** Name the following organic compounds.
 - **i.** (1 mark)

2-hydroxy-3-methylbut-2-enedioic acid

ii. (1 mark)

3-ethyl-2-hydroxy-4-methylpent-4-enoic acid

iii. $CH_2CH(CH(OH))_3COOH$. (1 mark)

2,3,4-trihydroxyhex-5-enoic acid

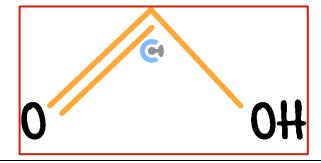
Question 14 (3 marks)

Elijah is studying an organic compound. The compound is shown below.

a. Draw the semi-structural formula for this organic compound. (1 mark)

----- HOOCCH₂CH₂C(CH₃)₂CHClCOOH

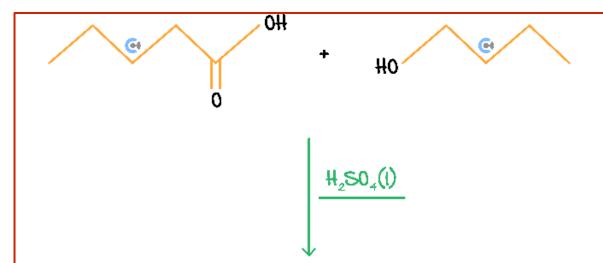
b. State the IUPAC name for this compound. (1 mark)

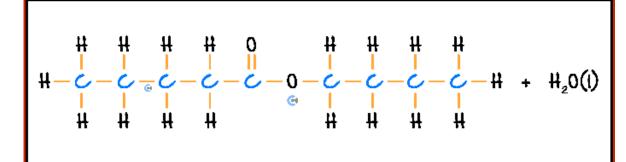

2-chloro-3,3-dimethylhex anedioic acid

c. Draw the structural formula for this organic compound. (1 mark)

Question 15 (1 mark)

Draw the skeletal structure for methanoic acid.




<u>Sub-Section [2.7.2]</u>: Write Condensation Reactions for the Formation of Esters & Relevant Catalysts/Conditions

Question 16 (3 marks)

Complete the reaction below using the structural formula for all organic compounds. States are not required for organic compounds.

- (1) Correct ester
- (1) Water with correct state
- (1) Correct catalyst with correct state

Question 17 (4 marks)

a. Complete the esterification word equation below. States are not required. (2 marks)

Carboxylic acid + Alcohol

 $\xrightarrow{\text{catalyst}}$ Ester + Water/H₂0

(1) Carboxylic Acid and Water

(1) Ester

b. State the type of reaction in **part a.** (1 mark)

Condensation reaction (1)

c. State a suitable catalyst for this reaction. (1 mark)

H₂SO₄(l) or Concentrated H₂SO₄ (1)

Question 18 (5 marks)

a. Complete the reaction below using the semi-structural formula for any organic compounds. States are not required for organic compounds. (2 marks)

 $\mathsf{CH_3CH_2CH_2CH_2COOH} + \mathsf{CH_3CH_2CH_2OH} \xrightarrow{\mathsf{H_2SO_4(I)}} \mathsf{CH_3CH_2CH_2CH_2CH_2CH_2CH_2CH_3} + \mathsf{H_2O(I)}$

b. Explain why the reaction above is called a 'condensation' reaction. (1 mark)

(1) Correct acid.(2) Correct alcohol.

The reaction removes water from the reactants to create a bigger compound (1). The removal of water makes this a condensation reaction.

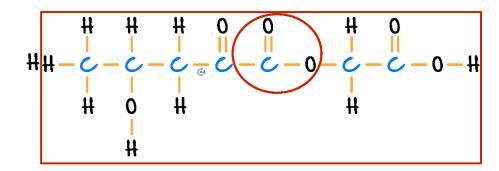
c. State the function of H_2SO_4 in terms of esterification reactions. (1 mark)

 H_2SO_4 is a catalyst (1)

	Propyl pentanoate (1)	
Question 19 (5 marks) Extens	sion.	
eversible under the correct co	ohol and an acid to form an ester is known as a 'condenditions. The reverse reaction separates an ester into a	
-	reaction is known as a 'hydrolysis' reaction.	
complete the hydrolysis re required. (2 marks)	eaction below using your knowledge of esterification	reactions. States are not
required. (2 marks)	eaction below using your knowledge of esterification is $H_2CH_2CH_2CH_3 + H_2O(1) \xrightarrow{H_2SO_4(aq)} CH_3CH_2CH_2CH_2COOH$	
required. (2 marks) CH ₃ CH ₂ CH ₂ CH ₂ COOC H ₂ CH		
required. (2 marks) CH ₃ CH ₂ CH ₂ CH ₂ COOC H ₂ CH Explain why this reaction This reaction splits of	$H_2CH_2CH_2CH_3 + H_2O(1) \xrightarrow{H_2SO_4(aq)} CH_3CH_2CH_2CH_2COOH$	(1) Correct acid (2) Correct alcohol
required. (2 marks) CH ₃ CH ₂ CH ₂ CH ₂ COOC H ₂ CH Explain why this reaction This reaction splits of	$H_2CH_2CH_2CH_3 + H_2O(1) \xrightarrow{H_2SO_4(aq)} CH_3CH_2CH_2CH_2COOH$ is called a 'hydrolysis' reaction. (1 mark) esters into an alcohol and an acid using water. The wo	(1) Correct acid (2) Correct alcohol
required. (2 marks) $CH_3CH_2CH_2CH_2COOCH_2CH_2CH_2$ 5. Explain why this reaction This reaction splits of	$H_2CH_2CH_2CH_3 + H_2O(1) \xrightarrow{H_2SO_4(aq)} CH_3CH_2CH_2CH_2COOH$ is called a 'hydrolysis' reaction. (1 mark) esters into an alcohol and an acid using water. The wo, meaning water, and 'lysis', meaning to break apart ((1) Correct acid (2) Correct alcohol

Pentyl pentanoate (1)

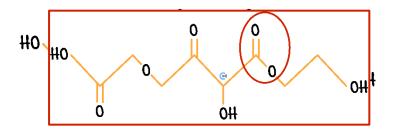
d. State the IUPAC name of the ester being hydrolysed. (1 mark)


<u>Sub-Section [2.7.3]</u>: Apply IUPAC Conventions to Identify, Draw & Write IUPAC Names of Straight-Chained Esters

Question 20 (3 marks)

j

Circle the ester group in each of the following organic compounds.


a. (1 mark)

b. (1 mark)

c. (1 mark)

Question 21 (4 marks)

Identify the carboxylic acid and the alcohol that are reacted to form the following esters.

a. (1 mark)

Hexanoic acid – Hexanol

b. CH₃CH₂CH₂CH₂CH₂COOCH₃. (1 mark)

----- Hexanoic acid - Methanol

c. (1 mark)

----- Methanoic acid - Heptanol

d. Propyl pentanoate. (1 mark)

----- Pentanoic acid - Propanol

Question 22 (3 marks)

State the IUPAC names for the following organic compounds.

a. (1 mark)

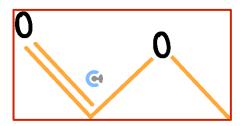
Butyl hexanoate

b. CH₃CH₂CH₂OCOCH₂CH₂CH₂CH₃. (1 mark)

Propyl pentanoate

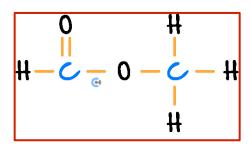
c. (1 mark)

Heptyl methanoate



Question 23 (3 marks)

Methyl methanoate is also known as methyl formate. It is a colourless liquid and has an ethereal odour.


a. Draw the skeletal structure of methyl methanoate. (1 mark)

b. Draw the semi-structural formula for methyl methanoate. (1 mark)

HCOOCH₃

c. Draw the structural formula for methyl methanoate. (1 mark)

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Chemistry ½

Free 1-on-1 Support

Be Sure to Make the Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

<u>1-on-1 Video Consults</u>	<u>Text-Based Support</u>
 Book via bit.ly/contour-chemistry-consult- 2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 137 304 with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

