ONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Chemistry ½ Introduction to Organic Chemistry [2.5]

Workbook

Outline:

Pg 18-44

Introduction to Organic Chemistry

- Pg 2-17 Introduction to Organic Chemistry
- Representation of Organic Molecules
- Skeletal Structure

Alkanes

- Straight-Chained Alkanes
- Branching
- Naming Organic Molecules (IUPAC Conventions)
- Multiple Sidechains

Haloalkanes or Alkyl Halides

Pg 45-51

Ringed Molecules

Pg 52-54

Learning Objectives:

- CH12 [2.5.1] Molecular, Structural, Semi-structural and Skeletal Formulae of Straight-Chained & **Branched Alkanes**
- CH12 [2.5.2] Write IUPAC Names of Branched & Unbranched Alkanes
- CH12 [2.5.3] Write Molecular, Structural, Semi-structural and Skeletal Formulae of Straight-Chained & Branched Haloalkanes
- CH12 [2.5.4] Write IUPAC Names of Branched & Unbranched Haloalkanes
- CH12 [2.5.5] Identify and Draw Simple Cycloalkanes & Write Their IUPAC Names

VCE Chemistry ½ Questions? Message +61 440 137 304

Section A: Introduction to Organic Chemistry

Sub-Section: Introduction to Organic Chemistry

Context

- > Three different types of intramolecular bonds:
 - **G** _____.
 - **G**
 - **G**
- > Organic Chemistry: ______ bonds, as they occur between non-metals.

Active Recall: What are covalent bonds?

Discussion: What elements do all living things contain?

Exploration: Carbon Covalent Bonding

- Organic Chemistry is the study of compounds of Carbon.
- Carbon:

Number of Protons	Number of Electrons	Electron Configuration

- Valence electrons: _____
- Electrons needed: _____
- Conclusion: Carbon can form _____ covalent bonds!
- Visualisation:

Wants to 'gain' 4 more electrons to obtain a full outer shell by forming 4 covalent bonds.

_		_	
Space	tor	Personal	i Notes

How do we name organic molecules?

Exploration: Naming Organic Compound Basics

Longest Carbon Chain Length	<u>Prefix</u>
1	
2	
3	
4	
5	
6	
7	
8	

TIP: Carbon lengths from 5-8 are the same as the prefixes for **shape!**

Sub-Section: Representation of Organic Molecules

Context

- Organic compounds generally have _____, ____ and ____ atoms.
- Multiple ways to express an organic molecule:
 - Molecular Formula.
 - G Structural Formula.
 - Semi-Structural Formula.
 - Skeletal Formula.

Let's have a look at what these look like together!

Molecular Formula

- **Definition**: Indicates the ______ of each atom which makes up a molecule.
- Example:

C_3H_8O

Carbon (C) atoms	<u>Hydrogen (H) atoms</u>	Oxygen (0) atoms

<u>Discussion:</u> What is a major downside of the molecular formula?

No indication of the ______.

Use the structural formula instead!

Exploration: Structural Formula

Consider Propan-1-ol:

Molecular Formula	Structural Formula
C ₃ H ₈ O	

Structural formula - Can the way the atoms are arranged be seen?

[Yes] / [No]

Structural formula - Can the number of each atom be determined?

[Yes] / [No]

NOTE: We'll cover what propan-1-ol (an alcohol) is later on!

Exploration: Lewis Dot Structure vs Structural Formula

	<u>Lewis Dot Structure</u>	Structural Formula
Structure	H H H G H H C C C O	H H H H H H
Covalent Bonds	Shows [electrons] / [bonds].	Shows [electrons] / [bonds].
Lone Pairs	Lone pair electrons [shown] / [not shown].	Lone pair electrons [shown] / [not shown].

<u>Discussion:</u> What are two things required in an exam with time pressure?

<u>Discussion:</u> What might be a downside of drawing a structural formula?

While the structural formula is good, there's a condensed version!

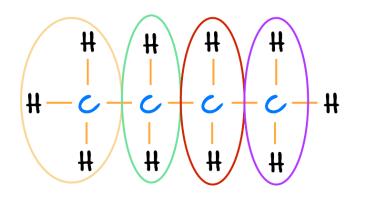
Exploration: Semi-Structural Formula (Condensed Structural Formula)

Structural formula for propan-1-ol:

- Draw a 'bubble' around each **Carbon** and the atoms it's bonded to. (*Draw Above*)
- Representation:

Semi-Structural Formula #1	Semi-Structural Formula #2

NOTE: Either of the above versions are accepted by VCAA!


Semi-Structural Formula

- Definition: Semi-structural formula is a more compact way of drawing the structural formula, and is also known as the ______ structural formula.
- ▶ It is written by writing the _____ of atoms surrounding each carbon atom.

Structural Formula

Semistructural Formula

Let's have a look at a question together!

Question 1 Walkthrough.

For each of the following:

Represent the molecule in the way specified, and state the relevant prefix for the number of carbons.

a. Structural formula:

Semi-structural formula:

Prefix:

b. Draw the structural formula of a molecule which has a semi-structural formula of CH₃CHOHCH₂CH₃.

Prefix:

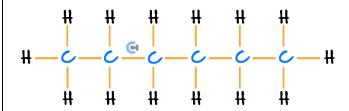
TIP: Look between two carbons in the semi-structural formula to know what is on each carbon!

Recall!

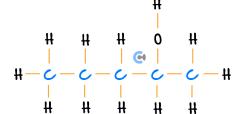
Active Recall: Prefixes for the following number of carbons:

Longest Carbon Chain Length	<u>Prefix</u>
1	
2	
3	
4	
5	
6	
7	
8	

Your Turn!



Question 2


The structural formula for the following molecules is provided.

Write the semi-structural formula for each of them, and state the prefix indicating the number of carbons in the molecule.

a.

b.

Question 3

The semi-structural formula for the following molecules is provided. Draw the structural formula for each of them, and state the prefix indicating the number of carbons in the molecule.

a. CH₃CH₃

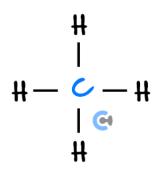
VCE Chemistry ½ Questions? Message +61 440 137 304

b. CH ₃ CH ₂ CH ₂ NH ₂	

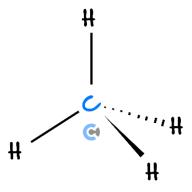
S	Space for Personal Notes

Sub-Section: Skeletal Structure

Context

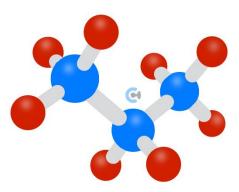

One more representation: _____ structure.

Before looking at skeletal structures, let's first have a look at molecular geometry!



Exploration: Molecular Geometry of Organic Molecules

Consider methane:


- The geometry of methane is ______ not actually a square shape.
- More accurately:

However, VCAA allows the 'square' drawing conventions.

CONTOUREDUCATION

Propane (C₃H₈) should have a shape like the following:

Depictions:

'More accurate' Structural Formula	<u>'Less accurate' Structural Formula</u>

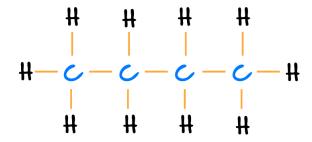
- VCAA final exam:
 - Inspired from VCAA Chemistry Exam 2021
 https://www.vcaa.vic.edu.au/Documents/exams/chemistry/2021/2021chem-w.pdf

• The structure is given in the 'more accurate' form, but **not** required.

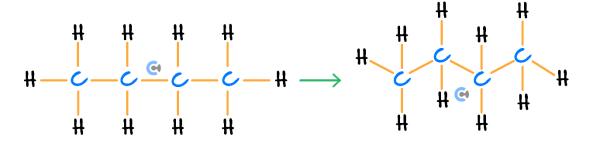
TIP: For SACs, do what your teachers want. For the final exam, do whichever!

Active Recall: Which element is the backbone of organic chemicals?

Active Recall: How many bonds does carbon typically form?



Let's have a look at skeletal structures now!


Exploration: Skeletal Structure

- Each carbon in the **backbone** is typically bonded to ______ to obtain **four** covalent bonds!
- **Conclusion:** [Do] / [do not] include **carbon** and **hydrogen** in the skeletal structure!
- Consider butane (C₄H₁₀):

• Reality: Backbone is angled. (Highlight below)

Redrawn:

- Any intersection/end is assumed to be a ______ atom.
- G The lines are assumed to be a _______ between adjacent carbon atoms.
- ➤ Consider propan-1-ol (C₃H₈O):

Structural Formula	Skeletal Formula
# # # # # OH •	

Misconception

"The skeletal formula for butane (C₄H₁₀) consists of four lines - one line for each carbon."

TRUTH: Each intersection or end counts as a carbon.

If we have four lines, that results in 5 overall ends/intersections,
meaning that pentane (alkane with 5 carbons) is represented instead.

Proper skeletal representation:

NOTE: We'll cover skeletal structures more in-depth as we go on, so don't worry too much right now!

Let's cover the first organic class of molecules, which are alkanes!

Space for Personal Notes	

Section B: Alkanes

Sub-Section: Straight-Chained Alkanes

Hydrocarbons

- Definition
- **Definition:** An organic compound that only consists of the following elements:
 - **G**
 - **G**

Active Recall: How many bonds does hydrogen want to form to obtain a full outer shell?

Exploration: First Alkane

Consider the following carbon atom:

- Hydrogens attached: _____ (Draw Above)
- Carbons present: _____
 - Prefix: _____
- Name: ______

Alkanes

➤ **Definition: Hydrocarbons** that only contain ______ bonds.

TIP: Remember alkane as:

alk-ane

'-ane' starts with 'a', the _____ vowel - standing for carbon-carbon _____ bonds.

Exploration: Different Representations of Alkanes

First 3 alkanes:

Number of Carbons	1	<u>2</u>	<u>3</u>
Name			
Structural Formula			
Semi-Structural Formula			
Skeletal Formula			
Molecular Formula			

TIP: When drawing skeletal formulas, 'start counting' how many points by starting with the dot.

Exploration: Molecular Formulas of Alkanes

<u>Alkanes</u>	Semi-Structural Formula	<u>Molecular Formula</u>
Methane	CH₄	$\mathrm{CH_4}$
Ethane	$\mathrm{CH_3}-\mathrm{CH_3}$	C_2H_6
Propane	$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_3}$	C_3H_8
Butane	$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CH_3}$	C_4H_{10}
Pentane	$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CH_3}$	C_5H_{12}

Pattern:

Let's have a look at a question together!

Question 4 Walkthrough.

Represent heptane in each of the following ways:

a. Molecular Formula and semi-structural formula.

Molecular Formula	Semi-Structural Formula

b. Skeletal structure.

REMINDER: The general molecular formula of an alkane is ______.

NOTE: When there are multiple $-CH_2$ – groups, they can be condensed!

► E.g. _____

Question 5

Name the following molecule, and write the molecular formula.

CH12 [2.5] - Introduction to Organic Chemistry - Workbook

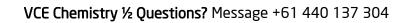
R

Your Turn!

Question 6

Find the molecular formula and draw the semi-structural and skeletal formulae for each of the following molecules.

- a. Pentane.
 - i. Molecular Formula and semi-structural formula.


Molecular Formula	Semi-Structural Formula

ii. Skeletal structure.

- **b.** Octane.
 - i. Molecular Formula and semi-structural formula.

Semi-Structural Formula

ii. Skeletal structure.

Question 7 Additional Question.

pace for Personal Notes	

Sub-Section: Branching

So far, we've been assuming that carbons will be connected to each other in a linear chain. However, carbons can also start to branch!

Exploration: Branching

Consider butane:

- Instead of filling extra bonds with hydrogen, fill one with another carbon. (Draw Above)
- Branches:

G Extra carbon on top: [Side] / [Main] branch

• Four carbons on bottom: [Side] / [Main] branch.

- Main vs side branch:_______.
- Side branches are called _____ chains.
- In this scenario, carbons in the side chain: _____
 - G Side chain name: _____

Naming entire molecule:add alkyl chain as a prefix, following it with '-yl':

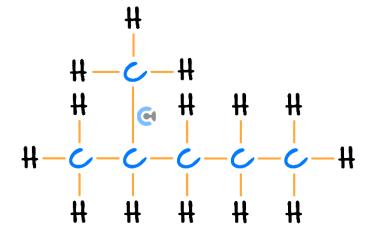
Original Molecule	New Molecule

Let's properly cover how to name the molecules systematically!

Sub-Section: Naming Organic Molecules (IUPAC Conventions)

Context

Must follow the International Union of Pure and Applied Chemical (IUPAC) standards.


Exploration: Introduction to IUPAC Nomenclature

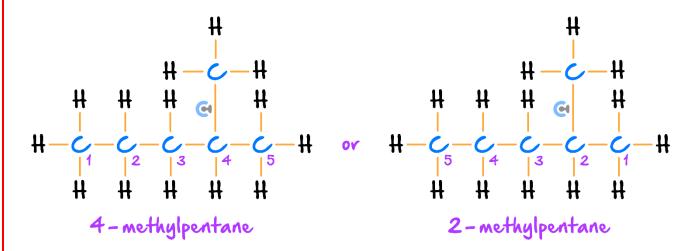
Consider pentane with a side branch:

Arrangement 1	Arrangement 2

- Difference:
- > Arrangement 1:

Where is the main chain? (Highlight Above)

CONTOUREDUCATION


Which side is the methyl group closest to? [Left] / [Right]
• Number carbons in the main chain starting with the side methyl group is closest to! (Label Above)
Carbon number the methyl group is on:
➤ Rules:
The number is indicated at the beginning .
• No spaces in the name (apart from esters and carboxylic acids).
• Numbers and letters separated by dashes (—).
➤ Name:
Depicting side chains in semi-structural:
Semi-Structural Formula:
Skeletal structure:
Space for Personal Notes

Misconception

"The following molecule can be named as 2-methylpentane or 4-methylpentane depending on which side we start naming from."

TRUTH: We have to always start naming the molecule from the side where the functional groups are closest to.

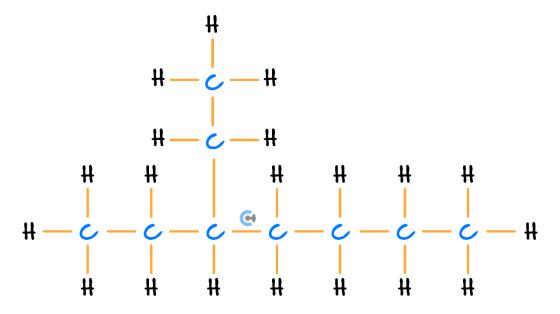
NOTE: In 3D, you can rotate them and they are the same thing.

NOTE: These molecules exist in 3D space where they are constantly moving and can rotate, which is why '4-methylpentane' is just 2-methylpentane!

Now, let's compare the two arrangements of the methylpentane!

R

Exploration: Alkyl Group on Different Carbons


Arrangement 1	Arrangement 2
Name 2-methylpentane	Name
Semi-Structural CH ₃ CH ₂ (CH ₃)CH ₂ CH ₂ CH ₃	Semi-Structural
Skeletal	Skeletal
G	

What about longer side chains?

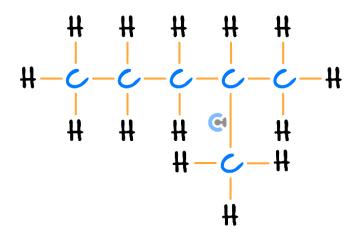
Exploration: Longer Side Chains

Consider the following molecule:

- Side chain name:
- Side chain on carbon:
- Main chain name:
- IUPAC name:

IUPAC Naming Conventions #1

- The [main] / [side] branch has **less** carbons.
- Side branches: _____ chains, named using '-yl'.
- The position of a branch is indicated by a number at [beginning] / [end].
- There [are] / [are no] **spaces** in a name, (apart from esters and carboxylic acids).
- Numbers and letters separated by ______.

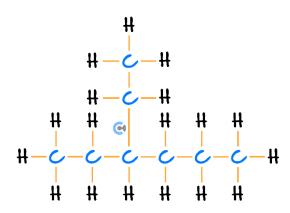


Try Some Questions!

Question 8

Name each of the following molecules & draw their semi-structural and skeletal formulas.

a.


Name and semi-structural formulas.

Name	Semi-Structural Formula

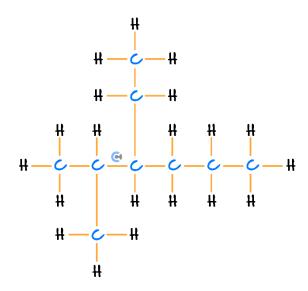
ii. Skeletal structure.

h

i. Name and semi-structural formulas.

Name	Semi-Structural Formula

ii. Skeletal structure.

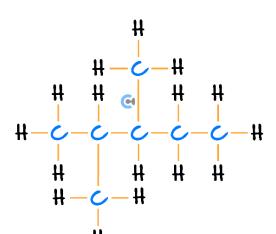

Sub-Section: Multiple Sidechains

Sometimes, there are molecules with multiple side chains. Let's have a look at a few examples together!

Exploration: Two Different Sidechains

- Where is the main chain? Where are the sidechains? How long are the sidechains? (Label Above)
 - Two sidechains. Reference first: [methyl] / [ethyl]
- Multiple side chains: Name them according to ______ order.
- ► Name: _____

REMINDERS


0

Numbers and letters are separated by dashes (−).

Exploration: Two Same Sidechains

Consider the following molecule:

- Where is the main chain? Where are the sidechains? How long are the sidechains? (Label Above)
- Two of the same sidechain reference as:

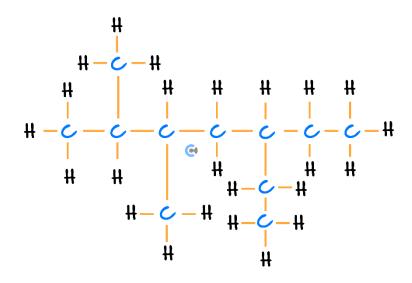
2-methyl-3-methylpentane

- ► Both sidechains are 'methyl' can be grouped together: ______.
- Name: _______

NOTE: Numbers and numbers are separated by _____!

IUPAC Naming Conventions #2

- Alphabetical Order: Different functional groups are listed ______ at the start of the name.
- Multiple of Same Group:
 - G Use prefixes: ______.
 - G Each group is numbered for position on the carbon chain.
- Number Separation: _____



Let's look at one more example together!

Exploration: Same and Different Side Chains

Consider the following molecule:

- Where is the main chain? (Highlight Above)
- Where are the sidechains? (Label Above)

Which side do we start numbering the carbons from?

- New Idea: _____
- Sidechain with priority: [Shorter methyl groups] / [Longer ethyl groups]
- Side start numbering from: [Left] / [Right]
- Side chain naming:
 - Ethyl group is called 'ethyl'.
 - Two methyl groups are called 'dimethyl'.
- What comes first alphabetically? [ethyl] / [dimethyl]
- Prefixes such as 'di-', _____ counted: only compare the 'ethyl' and 'methyl' alphabetically!

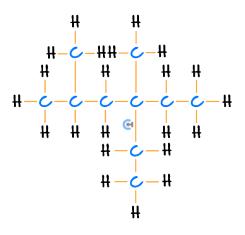
IUPAC Naming Conventions #3

- Two side chains of different lengths: Priority is given to the [shorter] / [longer] side chain.
- When naming, [do] / [do not] count 'di-, tri- or tetra-' when comparing alphabetical order.

NOTE: Some teachers do not follow this rule and count the 'di-, tri- or tetra-', so be sure to check what your teacher wants and follow what they say for your SACs!

Your turn!

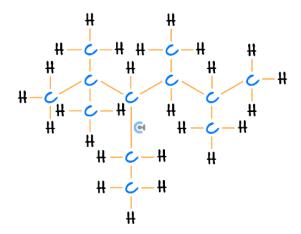
Question 9


Name each of the following organic compounds and write their names and their semi-structural formulas.

a.

Name	Semi-Structural Formula

b.



Name	Semi-Structural Formula

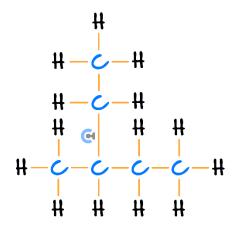
Question 10

Name each of the following organic compounds and write their names and skeletal formulas.

a.

Name	Skeletal Formula

b.


Name	Skeletal Formula

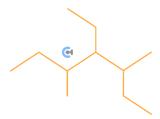
Misconception

"The following molecule is named '2-ethylbutane."

TRUTH: Remember that the longest Carbon chain needs to be identified.

NOTE: The longest continuous carbon chain can be angled!

C


Your turn!

Question 11

Name each of the following from the provided structural, semi-structural or skeletal structures.

a.

b.

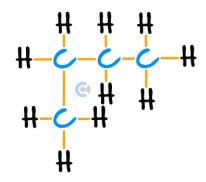
c.

 $CH_3CH(CH_3)CH(CH_3)CH_3$

d.

e.

TIP: Semi-structural formulas can be hard to visualise, so sketch the structural or skeletal structure on the side!


Misconception

"The following molecule is called 2-methylpropane."

TRUTH:

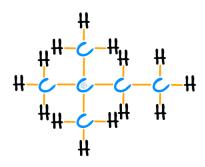
Can the methyl group be placed on the first carbon?

- ➤ Name of "1-methylpropane": ______
- Methyl group can only be placed in **one** location (C-2), we _____ have to write the '2'.
- Conclusion: Considered wrong to write ______ numbers.
- Actual Name: _____

Your turn!

Question 12

Name each of the following:


a.

b.

c.

d.

e.

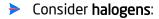
Section C: Haloalkanes or Alkyl Halides

Context

- > So far: 'filling in' spare bonds by using hydrogens.
- Alternative: 'fill in' the spare bonds by using halogens.

Active Recall: What group are halogens in?

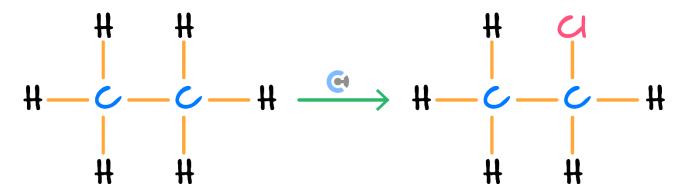
Periodic table of the elements


1 H 1.0 Hydrogen		2																	2 He 4.0 Helium
3 Li 6.9 Lithium	4 Be 9.0 Beryllium							nic number tomic mass	79 Au 197.0 Gold	Symbol o	of element		5 B 10.8 Beren	6 C 12.0 Carbo	1	7 N 4.0 rogen	8 0 16.0 0xygen	9 F 19.0 Fluorine	10 Ne 20.2 Neon
11 Na 23.0 Sodium	12 Mg 24.3 Magnesium	G								_			13 Al 27.0 Aluminium	14 Si 28.1 Silicon	3	5 P 1.0 phorus	16 S 32.1 Sulfur	17 Cl 35.5 Chlorine	18 Ar 39.9 Argon
19 K 39.1 Potassium	20 Cn 40.1 Calciam	21 Sc 45.0 Scandium	22 Ti 47.9 Titanium	23 V 50.9 Vanadium	24 Cr 52.0 Chromium	25 Mn 54.9 Manganese	26 Fe 55.8 Iron	27 Co 58.9 Cobal	58		29 Cu 63.5 Copper	30 Zn 65.4 Zinc	31 Ga 69.7 Gallium	32 Ge 72.6 Germani	7	13 As 4.9 senic	34 Se 79.0 Selenium	35 Br 79.9 Bromine	36 Kr 83.8 Krypton
37 Rb 85.5 Rubilium	38 Sv 87.6 Stventium	39 9 88.9 9Hvium	40 Zr 91.2 Zirconium	41 Nb 92.9 Niobium	42 Mo 96.0 Molybdenum	43 Tc (98) Technetium	44 Ru 101.1 Ruthenia	45 Rh 1029 m Rhodin	100	6 24 6.4 ulium	47 Ag 107.9 Silver	48 Cd 112.4 Cadmium	49 In 114.8 Indium	50 Sn 118.7 Tin	12	51 56 21.8 imony	52 Te 127.6 Tellarium	53 126.9 odine	54 Xe 131.3 Xenon
55 Cs 132.9 Cresium	56 Ba 137.3 Barium	57-71 Lanthanoids	72 Hf 178.5 Hafnium	73 Ta 180.9 Tantalum	74 W 183.8 Tungsten	75 Re 186.2 Rhenium	76 0s 190.2 Osminn	77 lv 192.2 lridiun	. F	8 24 5.1 inum	79 Au 197.0 Gold	80 Hg 200.6 Mercary	81 TI 204.4 Thallium	82 Pb 207.2 Lead	20	13 Bi 19.0 muth	84 Po (210) Polonium	85 At (210) Astatine	86 Ra (222) Radon
87 Fr (223) Francium	88 Ra (226) Radium	89-103 Actinoids	104 Rf (261) Rutherfordium	105 Db (262) Dubnium	106 Sg (266) Seaborgium	107 Bh (264) Bohrium	108 Hs (267) Hassin	109 Mt (268) Meitneri	(2	10 >s 71) tadtium Ro	111 Rg (272) pentgenium	112 Cn (285) Copernicium	113 Nh (280) Nihonium	114 Fl (289) Flerovia	(2	115 Nc 89) covium	116 Lv (292) Livermorium	117 Ts (294) Tennessine	118 Og (294) Oganesson
	L		58 59 54 Pv		NA I	Pm :	52 5m 60.4	63 Ea 152.0	64 64 157.3	65 Tb 158.9	6 16:	9	67 Ho	68 Er 167.3	69 Tm 168.9	70 91 173	6	71 Lu 25.0	

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	N.A	Pm	Sm	Ea	GA	ТЪ	Dy	Ho	Er	Tm	96	Lu
138.9	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.1	175.0
Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	SHerbium	Lutetium
89	90	91	92	93	94	45	96	97	98	99	100	101	102	10.3

The value in brackets indicates the mass number of the longest-lived isotope

CONTOUREDUCATION


Exploration: Halogens

Covalent bonds: _____

Conclusion: Hydrogen can be swapped out for a halogen. (Highlight Below)

NOTE: We'll cover how this exact reaction takes place in VCE Chemistry ¾ in Substitution reactions!

Analogy: Aussie Bogan

Imagine your typical Australian Bogan whose name is 'Jonathan'.

- What is his nickname? _____
- This is how halogens are named!

Halogen Naming

Common halogens covered in VCE Chemistry are:

<u>Halogen</u>	Naming Prefix
Fluorine (F)	
Chlorine (CI)	
Bromine (Br)	
lodine (I)	

The prefixes for halogens can be found on page 15 of the Data Book.

Space	for	Personal	Notes
Space	. 0.	i Ci Soriai	140103

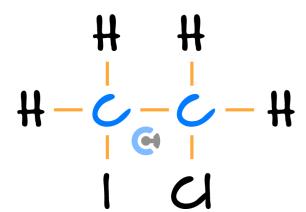
Let's have a look at two examples together!

Exploration: Structures of Haloalkanes

Arrangement 1	Arrangement 2
Br H H———————————————————————————————————	# # # # # #
Name	Name
Semi-Structural	Semi-Structural
Skeletal	Skeletal

NOTE: When drawing skeletal structures, if elements other than carbon or hydrogen are used, they need to be **explicitly mentioned**.

ALSO NOTE: Halogens are simply added to the ______ of the name of the organic compound as a prefix.



Let's look at two more scenarios together!

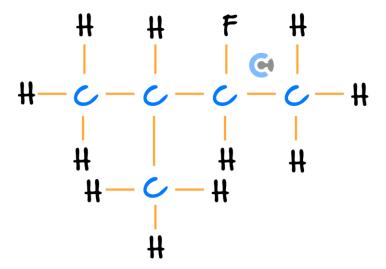
Exploration: Haloalkane #1

Consider:

- Just as how long the carbon chain length (ethyl vs methyl) was prioritised, the [lighter] / [heavier] substance is prioritised.
- Priority when numbering: [lodine] / [Chlorine]
- Number each carbon on the molecule. (Label Above)
- When writing the name for the molecule, first prefix: [iodo-] / [chloro]
- Name:

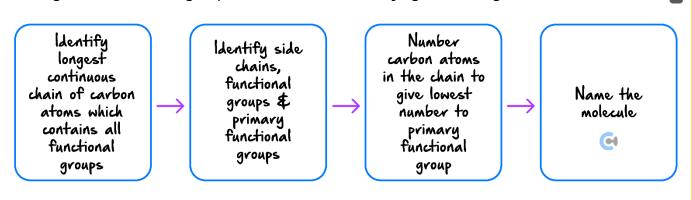
REMINDER: During naming, the prefixes are listed in alphabetical order!

Naming Haloalkanes


- Naming Halogens: Added to the [start] / [end] of the name as the prefix.
- Prefix: Abbreviate by adding an ______.
- Numbering Priority: [Lowest] / [Heaviest] atom / chain.

CONTOUREDUCATION

Exploration: Haloalkane #2



- Priority when numbering: [methyl] / [fluorine]
- When naming, first prefix: [methyl-] / [flouro-]
- ► Name: _____

NOTE: Halogens [have] / [do not have] priority over alkyl groups when numbering.

- 1

TIP: In general, the following steps can be followed when trying to name organic molecules:

Try some questions!

Question 13

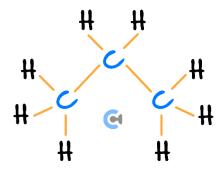
Name each of the following:

a.

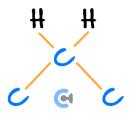
b.

c.

Section D: Ringed Molecules


Context

- So far: Linear molecules.
- Reality: Cyclic / ringed molecules.


Exploration: Ringed Molecules

'Linear' molecules start at one end and end at another:

What if they link together?

- Instead of having a **chain** of carbons, it can also have a **ring** of carbons forming a **closed loop**.
- > Called ______ or cyclic molecules.

<u>Discussion:</u> What is the minimum number of carbons required for cyclic molecules?

Exploration: Cyclic Molecules

Number of Carbons	3	4	5
<u>Name</u>			Cyclopentane
<u>Structural</u> <u>Formula</u>			
<u>Semi-</u> Structural Formula			
<u>Skeletal</u> Formula			G
<u>Molecular</u> <u>Formula</u>			C ₅ H ₁₀

TIP: When writing the semi-structural formula for cyclic molecules, the left groups should be written as " H_2C " instead of " CH_2 ".

Cyclic Molecules

- ▶ When naming cyclic molecules, simply add the prefix _____ in front of the molecule.
- The general molecular formula for cycloalkanes is ______.

NOTE: However, since the **naming** of cyclic molecules is not tested much in VCAA, this concept won't be explored much further!

5-	aco for Dorsonal Nati	~			
Sp:	ace for Personal Not	e S			

Contour Check

Learning Objective: [2.5.1] - Write molecular, structural, semi-structural and skeletal formulae of straight-chained & branched alkanes

Study Design

"Representations of organic compounds (structural formulas, semi-structural formulas) and naming according to the International Union of Pure and Applied Chemistry (IUPAC) systematic nomenclature (limited to non-cyclic compounds up to C8, and structural isomers up to C5)."

Kev Takeawavs

j
Multiple ways to express an organic molecule:
formula lists the actual number of atoms in the compound.
formula shows the arrangement of all atoms and all bonds.
formula is a more compact way of drawing the structural formula and is also known as the structural formula.
It is written by writing the of atoms surrounding each carbon atom.
Skeletal structure: [do] / [do not] include carbon and hydrogen.
Any intersection / end is assumed to be a atom.

☐ The lines are assumed to be a _______ between adjacent carbon atoms.

□ <u>Learning Objective</u>: [2.5.2] - Write IUPAC names of branched & unbranched alkanes

Study Design

"Representations of organic compounds (structural formulas, semi-structural formulas) and naming according to the International Union of Pure and Applied Chemistry (IUPAC) systematic nomenclature (limited to non-cyclic compounds up to C8, and structural isomers up to C5)."

Key Takeaways

Longest Carbon Chain Length	<u>Prefix</u>
1	
2	
3	
4	
5	
6	
7	
8	

A hydrocarbon is an organic compound that consists only of the following	elements:
O	
o	
Alkanes are hydrocarbons with only	_bonds.
Conoral molecular formula of an alkane is	

□ IU	■ IUPAC Nomenclature:		
0	The [main] / [side] branch is typically the one with less carbons.		
0	Side branches are known as chains, named using '-yl':		
0	The position of a branch is indicated by a number at the [beginning] / [end] of the name.		
0	There [are] / [are no] spaces in a name, apart from esters and carboxylic acids.		
0	Numbers and letters are separated by		
0	If there is more than one type of functional group to be listed at the beginning of a name, they are listed in order.		
0	More than one of the types of functional group, the prefixes 'di-', 'tri-' or 'tetra-' are used.		
0	Numbers are separated from other numbers by		
0	Two side chains of different lengths: Priority is given to the [shorter] / [longer] side chain.		
0	When naming, [do] / [do not] count 'di-, tri- or tetra-' when comparing alphabetical order.		
0	When alkyl / functional groups can only have a specific pre-determined location, beware of numbers.		

Learning Objective: [2.5.3] - Write molecular, structural, semi-structural	
	and skeletal formulae of straight-chained & branched haloalkanes

Study Design

"The grouping of hydrocarbon compounds into families (alkanes, haloalkanes, alkenes, alcohols, carboxylic acids) based upon similarities in their physical and chemical properties, including general formulas and general uses based on their properties."

Key Takeaways

Halogens are found in Group	and can thus form	covalent bond with a
hydrocarbon chain to form a haloa l	kane.	

- ☐ Haloalkanes follow all the same general rules as alkanes.
- When drawing skeletal structures, if elements other than carbon or hydrogen are used, they [need] / [do not need] to be **explicitly mentioned**.

□ Learning Objective: [2.5.4] - Write IUPAC names OF branched & unbranched haloalkanes

Study Design

"Representations of organic compounds (structural formulas, semi-structural formulas) and naming according to the International Union of Pure and Applied Chemistry (IUPAC) systematic nomenclature (limited to non-cyclic compounds up to C8, and structural isomers up to C5)."

Key Takeaways

Halogens are simply added to the of the name of the organic compound as a prefix.
They are named by abbreviating the halogen's name and adding an
When numbering , the [lowest] / [heaviest] atom / chain gets priority.
Halogens [have] / [do not have] priority over alkyl groups when numbering .

- ☐ If there is more than one type of functional group to be listed at the beginning of a name, they
 - are listed in ______ order.

	Learning Objective: [2.5.5] - Identify and draw simple cycloalkanes & write their IUPAC names
	Study Design
"	Representations of organic compounds (structural formulas, semi-structural formulas) and naming according to the International Union of Pure and Applied Chemistry (IUPAC) systematic nomenclature (limited to non-cyclic compounds up to C8, and structural isomers up to C5)."
	Key Takeaways
	Instead of having a chain of carbons, can also have a of carbons forming a closed loop , creating a cyclic / ringed molecule.
	When naming cyclic molecules, simply add the prefix in front of the molecule

☐ The general molecular formula for cycloalkanes is ______.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Chemistry ½

Free 1-on-1 Support

Be Sure to Make the Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

<u>1-on-1 Video Consults</u>	<u>Text-Based Support</u>
 Book via bit.ly/contour-chemistry-consult- 2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 137 304</u> with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

