

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

# VCE Chemistry ½ Moles & Stoichiometry Revision [2.4]

**Homework** 

#### Admin Info & Homework Outline:

| Student Name                                             |               |
|----------------------------------------------------------|---------------|
| Questions You Need Help For                              |               |
| [2.1] - Moles & Molar Mass                               | Pg 2 – Pg 13  |
| [2.2] - Relative Atomic Mass &<br>Percentage Composition | Pg 14 – Pg 29 |
| [2.3] - Stoichiometry                                    | Pg 30 — Pg 43 |
| [2.1-2.3] Overall (VCAA Qs)                              | Pg 44 – Pg 54 |



Section A: [2.1] - Moles & Molar Mass (61 Marks)

### Sub-Section [2.1.1]: Apply Avogadro's Number to Mole Calculations using $n=N/N_a$

| Qu  | estion 1 (4 marks)                                                         | ار |
|-----|----------------------------------------------------------------------------|----|
| For | the following questions, calculate the amount required.                    |    |
| a.  | The moles of magnesium atoms in $1.204 \times 10^{24}$ particles. (1 mark) |    |
|     |                                                                            |    |
|     |                                                                            |    |
| b.  | The particles of argon atoms in 19 moles. (1 mark)                         |    |
|     |                                                                            |    |
|     |                                                                            |    |
| c.  | The moles of francium atoms in $3.913 \times 10^{24}$ particles. (1 mark)  |    |
|     |                                                                            |    |
|     |                                                                            |    |
| d.  | The particles of copper atoms in 9.654 moles. (1 mark)                     |    |
|     |                                                                            |    |
|     |                                                                            |    |
|     |                                                                            |    |
|     |                                                                            |    |
| Sp  | ace for Personal Notes                                                     |    |
|     |                                                                            |    |
|     |                                                                            |    |



| Question 2 (4 marks)                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| Find the number of particles in the following.                                                                                            |
| <b>a.</b> In 2 moles of $O_2$ , find the particles of oxygen atoms. (1 mark)                                                              |
|                                                                                                                                           |
|                                                                                                                                           |
| <b>b.</b> In 4 moles of CaCl <sub>2</sub> , find the particles of calcium ions. (1 mark)                                                  |
|                                                                                                                                           |
|                                                                                                                                           |
| c. If we knew that a sample of $CO_2$ contained $1.20 \times 10^{24}$ particles of oxygen, how many moles of $CO_2$ were there? (2 marks) |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
| Space for Personal Notes                                                                                                                  |





| Que | estion 3 (6 marks)                                                                                                                             |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|
| Con | nsider the compound of ammonia, NH <sub>3</sub> .                                                                                              |
| a.  | If there are $6.02 \times 10^{24}$ molecules of ammonia, how many moles of ammonia are present? (1 mark)                                       |
| b.  | How many nitrogen atoms are there in this amount of ammonia? (1 mark)                                                                          |
|     |                                                                                                                                                |
| c.  | How many hydrogen atoms are there in this amount of ammonia? (1 mark)                                                                          |
|     |                                                                                                                                                |
|     | Given that we have $4.518 \times 10^{24}$ atoms of hydrogen in a sample of ammonia, calculate the moles of ammonia we have in total. (3 marks) |
|     |                                                                                                                                                |
|     |                                                                                                                                                |
|     |                                                                                                                                                |
|     |                                                                                                                                                |
|     |                                                                                                                                                |



| Qu        | nestion 4 (6 marks)                                                                                                                                                                                       |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Co        | nsider the compound of KMnO <sub>4</sub> , commonly referred to as potassium permanganate.                                                                                                                |
| a.        | Given that we have $6.41 \times 10^{29}$ particles of oxygen, what number of particles of manganese and potassium do we have? (2 marks)                                                                   |
|           |                                                                                                                                                                                                           |
| <b>b.</b> | Hence, what number of moles of potassium permanganate do we have? (1 mark)                                                                                                                                |
|           |                                                                                                                                                                                                           |
| c.        | A student says that 100 molecules of $O_2$ versus 100 molecules of $Se_2$ , because $Se$ is a much bigger molecule than $O$ , their amount in moles will be different. Evaluate this statement. (3 marks) |
|           |                                                                                                                                                                                                           |
|           |                                                                                                                                                                                                           |
|           |                                                                                                                                                                                                           |
|           |                                                                                                                                                                                                           |
| Sp        | pace for Personal Notes                                                                                                                                                                                   |
|           |                                                                                                                                                                                                           |
|           |                                                                                                                                                                                                           |





# Sub-Section [2.1.2]: Apply Molar Mass to Mole Calculations Using $oldsymbol{n} = oldsymbol{m}/oldsymbol{M}$

| Qu  | nestion 5 (4 marks)                                      |   |
|-----|----------------------------------------------------------|---|
| For | r the following substances, find their molar mass.       |   |
| a.  | CO <sub>2</sub> . (1 mark)                               | - |
| b.  | KCl. (1 mark)                                            | - |
| c.  | CaCO <sub>3</sub> . (1 mark)                             | - |
| d.  | C <sub>6</sub> H <sub>12</sub> O <sub>6</sub> . (1 mark) |   |
|     |                                                          |   |





| Qu  | nestion 6 (4 marks)                                                                         |
|-----|---------------------------------------------------------------------------------------------|
| For | r the following samples, calculate the amount required.                                     |
| a.  | Given that there is $5.0 g$ of $CO_2$ , calculate the moles present. (1 mark)               |
|     |                                                                                             |
| b.  | Given that there is 10.0 g of NaOH, calculate the moles of sodium hydroxide. (1 mark)       |
| c.  | Given that there are 3.00 moles of MgCl <sub>2</sub> , calculate the mass present. (1 mark) |
| d.  | Given that there are 2.50 moles of KNO <sub>3</sub> , calculate the mass present. (1 mark)  |
|     |                                                                                             |
| Sp  | ace for Personal Notes                                                                      |
|     |                                                                                             |
|     |                                                                                             |





| Qu | nestion 7 (5 marks)                                                                                                                                                                  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a. | Given that a sample contains 12.50 moles and weighs 778.75 $g$ , what is its molar mass? (2 marks)                                                                                   |
|    |                                                                                                                                                                                      |
| b. | Based on your understanding of molar mass, is it reasonable to assume that $10 g$ of NaNO <sub>3</sub> will be similar in amount to $10 g$ of CsNO <sub>3</sub> ? Explain. (3 marks) |
|    |                                                                                                                                                                                      |
|    |                                                                                                                                                                                      |
|    |                                                                                                                                                                                      |
|    |                                                                                                                                                                                      |
|    |                                                                                                                                                                                      |

| Space for | Personal | Notes |
|-----------|----------|-------|
|-----------|----------|-------|





| Qu  | testion 8 (7 marks)                                                                                              | )) |
|-----|------------------------------------------------------------------------------------------------------------------|----|
| Co: | nsider an unknown chemical $X_2$ 0. We know that there are $7.89 \times 10^{25}$ atoms of oxygen in this sample. |    |
| a.  | What is the number of individual atoms in our sample? (2 marks)                                                  | _  |
| b.  | Find the moles of $X_2$ 0. (2 marks)                                                                             | -  |
|     | If the compound is 12345 grams, find its molar mass. (2 marks)                                                   | _  |
| d.  | What is <i>X</i> 's identity? (1 mark)                                                                           | _  |
|     |                                                                                                                  | _  |
| Sp  | ace for Personal Notes                                                                                           |    |
|     |                                                                                                                  |    |
|     |                                                                                                                  |    |
|     |                                                                                                                  |    |





### <u>Sub-Section [2.1.3]</u>: Apply Unit Conversions to Calculation Questions

| Question 9 (4 marks)                                                |  |
|---------------------------------------------------------------------|--|
| For the following, convert the current units to the units required. |  |
| <b>a.</b> Convert 5.50 kg to grams. (1 mark)                        |  |
| <b>b.</b> Convert 3 hours to seconds. (1 mark)                      |  |
| c. Convert 7500 milligrams to kilograms. (1 mark)                   |  |
| d. Convert 25 micrometres to metres. (1 mark)                       |  |
|                                                                     |  |
| Space for Personal Notes                                            |  |
|                                                                     |  |
|                                                                     |  |
|                                                                     |  |
|                                                                     |  |
|                                                                     |  |



| Question 10 (4 marks) |                                                                                                                     |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------|--|
| Fin                   | nd the missing value for the following scenarios.                                                                   |  |
| a.                    | Given that a sample of $K_2SO_4$ weighed 2.50 $kg$ , what is the number of moles present? (1 mark)                  |  |
|                       |                                                                                                                     |  |
| b.                    | Given that another sample of $CaCl_2$ weighed 980 $mg$ , what is the number of atoms of chlorine present? (3 marks) |  |
|                       |                                                                                                                     |  |
|                       |                                                                                                                     |  |
|                       |                                                                                                                     |  |
|                       |                                                                                                                     |  |
| Sp                    | ace for Personal Notes                                                                                              |  |
|                       |                                                                                                                     |  |
|                       |                                                                                                                     |  |
|                       |                                                                                                                     |  |
|                       |                                                                                                                     |  |
|                       |                                                                                                                     |  |
|                       |                                                                                                                     |  |
|                       |                                                                                                                     |  |



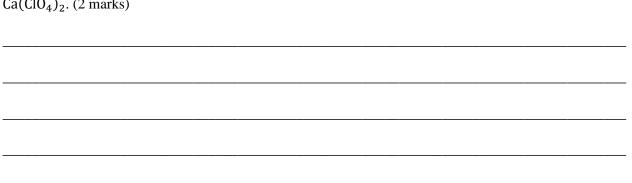
| Qu | Question 11 (5 marks)                                                                                           |  |  |
|----|-----------------------------------------------------------------------------------------------------------------|--|--|
| Co | nsider the compound of calcium bromide.                                                                         |  |  |
| a. | What is its molar mass? (1 mark)                                                                                |  |  |
| b. | Given that, a sample contains $9.7412 \times 10^{-4}$ megagrams, what is the number of moles present? (2 marks) |  |  |
| c. | Now, given that is the case, find the mass of bromine in the sample, expressed in milligrams. (2 marks)         |  |  |
|    |                                                                                                                 |  |  |
|    |                                                                                                                 |  |  |
| Sp | pace for Personal Notes                                                                                         |  |  |





| Question 12 (8 marks)                                                                                                |  |  |
|----------------------------------------------------------------------------------------------------------------------|--|--|
| Consider a molecule of K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> , commonly referred to as potassium dichromate. |  |  |
| a. What is the molar mass of this molecule? (1 mark)                                                                 |  |  |
|                                                                                                                      |  |  |
| <b>b.</b> What type of intramolecular bonding holds this molecule together? (1 mark)                                 |  |  |
| c. If there was 20.3 mg of potassium dichromate present, how many moles of it are present? (1 mark)                  |  |  |
| d. From your previous answer, calculate the number of molecules of potassium dichromate present. (2 marks)           |  |  |
|                                                                                                                      |  |  |
| e. Now, state how many kilograms of oxygen was present in the sample. (3 marks)                                      |  |  |
|                                                                                                                      |  |  |
|                                                                                                                      |  |  |
|                                                                                                                      |  |  |
|                                                                                                                      |  |  |
| Space for Personal Notes                                                                                             |  |  |




### Section B: [2.2] - Relative Atomic Mass & Percentage Composition (83 Marks)



# <u>Sub-Section [2.2.1]</u>: Calculate The Percentage Composition By Mass Of An Element In A Compound

| Question 13 (4 marks)                                                                        |  |
|----------------------------------------------------------------------------------------------|--|
| For the following, find the percentage composition of the required element in the substance. |  |
| <b>a.</b> Oxygen in $H_2O_2$ . (1 mark)                                                      |  |
|                                                                                              |  |
|                                                                                              |  |
|                                                                                              |  |
|                                                                                              |  |
| <b>b.</b> Carbon in CO <sub>2</sub> . (1 mark)                                               |  |
|                                                                                              |  |
|                                                                                              |  |
|                                                                                              |  |
| c. Hydrogen in NH <sub>3</sub> . (1 mark)                                                    |  |
|                                                                                              |  |
|                                                                                              |  |
|                                                                                              |  |
|                                                                                              |  |
| <b>d.</b> Sulphur in SO <sub>3</sub> . (1 mark)                                              |  |
|                                                                                              |  |
|                                                                                              |  |
|                                                                                              |  |
|                                                                                              |  |

| Qu       | Question 14 (2 marks)                                                                      |  |
|----------|--------------------------------------------------------------------------------------------|--|
| For      | r the following, find the percentage composition of the required element in the substance. |  |
| a.       | Phosphorus in H <sub>2</sub> PO <sub>4</sub> . (1 mark)                                    |  |
|          |                                                                                            |  |
|          |                                                                                            |  |
|          |                                                                                            |  |
|          |                                                                                            |  |
| b.       | Magnesium in $Mg_3(PO_4)_2$ . (1 mark)                                                     |  |
|          |                                                                                            |  |
|          |                                                                                            |  |
|          |                                                                                            |  |
|          |                                                                                            |  |
| <u> </u> |                                                                                            |  |
| 0        | vection 15 (4 montes)                                                                      |  |
|          | nestion 15 (4 marks)                                                                       |  |
| For      | r the following, find the percentage composition of all the elements in the compound.      |  |
|          | $C_{\alpha}(C \Omega)$ (2 modes)                                                           |  |



| <u>u</u> | estion 16 (8 marks)                                                                                                                          |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 01       | nsider the molecule of C <sub>3</sub> H <sub>7</sub> OH.                                                                                     |
| •        | What is the percentage composition by mass of carbon? (2 marks)                                                                              |
|          |                                                                                                                                              |
|          |                                                                                                                                              |
|          |                                                                                                                                              |
|          |                                                                                                                                              |
| ٠.       | What is the percentage composition by mass of hydrogen? (2 marks)                                                                            |
| •        | What is the percentage composition by mass of hydrogen. (2 marks)                                                                            |
|          |                                                                                                                                              |
|          |                                                                                                                                              |
|          |                                                                                                                                              |
| •        | Explain why the value you obtained for carbon is higher than hydrogen when the individual number of hydrogens is more than carbon. (2 marks) |
|          |                                                                                                                                              |
|          |                                                                                                                                              |
|          |                                                                                                                                              |
|          |                                                                                                                                              |
|          |                                                                                                                                              |



| Can the percentage composition be 100% for an element in a compound? (2 marks) |   |
|--------------------------------------------------------------------------------|---|
|                                                                                |   |
|                                                                                | _ |
|                                                                                |   |
|                                                                                | _ |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
| pace for Personal Notes                                                        |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |
|                                                                                |   |



### Sub-Section [2.2.2]: Find The Empirical Formula & Amp; Molecular Formula Of A Compound

| Que | estion 17 (3 marks)                                                                                                                                    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | .66 $g$ sample of iron combines with oxygen to give 5.232 $g$ of the final product, which contains only iron and gen. Determine the empirical formula. |
|     |                                                                                                                                                        |
|     |                                                                                                                                                        |
|     |                                                                                                                                                        |
|     |                                                                                                                                                        |
|     |                                                                                                                                                        |
|     | estion 18 (4 marks)  If the empirical formulae given the below information.                                                                            |
|     | A compound contains 26.2% nitrogen, 7.5% hydrogen, and 66.3% chlorine. (2 marks)                                                                       |
|     |                                                                                                                                                        |
|     |                                                                                                                                                        |
|     |                                                                                                                                                        |
|     |                                                                                                                                                        |
| b.  | A compound contains 19.4% carbon, 3.2% hydrogen, 77.4% oxygen. (2 marks)                                                                               |
|     |                                                                                                                                                        |
|     |                                                                                                                                                        |
|     |                                                                                                                                                        |
|     |                                                                                                                                                        |



| Question 19 (3 marks)                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A sample of an unknown compound is found to contain $0.825~g$ of carbon, $0.138~g$ of hydrogen and $1.037~g$ of oxygen. If the molar mass of the compound is $120~g~mol^{-1}$ , determine its molecular formula. |
|                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                  |
| <u> </u>                                                                                                                                                                                                         |
|                                                                                                                                                                                                                  |
| <ul> <li>Question 20 (7 marks)</li> <li>a. A sample of an unknown compound contains 0.200 g of carbon, 0.05 g of hydrogen and 0.300 g of oxygen. Find the empirical formula. (3 marks)</li> </ul>                |
|                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                  |
| <b>b.</b> Given that the molar mass of the compound is $90 \ g \ mol^{-1}$ , how many of the empirical formula is required? (1 mark)                                                                             |
|                                                                                                                                                                                                                  |
| c. As such, what is the molecular formula? (1 mark)                                                                                                                                                              |
|                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                  |



| d.  | Is it possible to have two molecular formulae with the same empirical formula? Give an example. (2 marks) |
|-----|-----------------------------------------------------------------------------------------------------------|
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     | and for Developed Mades                                                                                   |
| Spa | ace for Personal Notes                                                                                    |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |
|     |                                                                                                           |





### <u>Sub-Section [2.2.3]</u>: Calculate the Relative Atomic Mass of a Compound From its Relative Isotopic Abundance

| Qu | Question 21 (4 marks)                                                                                                                                         |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| a. | Boron exists in two isotopes, B-10 and B-11, with relative abundances of 19.9% and 80.1% respectively. Calculate the relative atomic mass of boron. (2 marks) |  |  |
|    |                                                                                                                                                               |  |  |
| b. | Silver has two isotopes, Ag-107 and Ag-109, with relative abundances of 51.82% and 48.18% respectively. Calculate its relative atomic mass. (2 marks)         |  |  |
|    |                                                                                                                                                               |  |  |
|    |                                                                                                                                                               |  |  |
| Qu | estion 22 (2 marks)                                                                                                                                           |  |  |
|    | Neon has three isotopes: Ne-20, Ne-21, and Ne-22. Their relative abundances are 90.48%, 0.27% and 9.25% respectively. Find the relative atomic mass of neon.  |  |  |
|    |                                                                                                                                                               |  |  |
|    |                                                                                                                                                               |  |  |
| Sp | Space for Personal Notes                                                                                                                                      |  |  |
|    |                                                                                                                                                               |  |  |



| Qu | Question 23 (4 marks)                                                                                            |  |  |
|----|------------------------------------------------------------------------------------------------------------------|--|--|
| Ga | Gallium exists as two isotopes, Ga-69 and Ga-71 with relative abundances of 60.11% and 39.89% respectively.      |  |  |
| a. | Calculate its relative atomic mass. (2 marks)                                                                    |  |  |
|    |                                                                                                                  |  |  |
|    |                                                                                                                  |  |  |
| b. | Since Gallium has two isotopes exactly, why aren't their abundances not 50% each? (2 marks)                      |  |  |
|    |                                                                                                                  |  |  |
|    |                                                                                                                  |  |  |
|    |                                                                                                                  |  |  |
|    |                                                                                                                  |  |  |
| Qu | nestion 24 (7 marks)                                                                                             |  |  |
|    | rbon exists in two isotopes mainly, C-12 and C-13 with relative atomic abundances of 98.93% and 1.07% pectively. |  |  |
| a. | Determine the relative atomic mass of carbon. (2 marks)                                                          |  |  |
|    |                                                                                                                  |  |  |
|    |                                                                                                                  |  |  |
|    |                                                                                                                  |  |  |
|    |                                                                                                                  |  |  |
|    |                                                                                                                  |  |  |



|    | T                                                                                                                                                      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| b. | Do you think that when we obtain a sample of carbon at random, the atomic mass of that sample is equivalent to the relative atomic mass? (2 marks)     |
|    |                                                                                                                                                        |
|    |                                                                                                                                                        |
|    |                                                                                                                                                        |
| c. | Suppose we collected a sample of carbon-13 exclusively, should the atomic mass be the same as the relative atomic mass? Justify your answer. (3 marks) |
|    |                                                                                                                                                        |
|    |                                                                                                                                                        |
|    |                                                                                                                                                        |
|    |                                                                                                                                                        |
| Sp | ace for Personal Notes                                                                                                                                 |
|    |                                                                                                                                                        |
|    |                                                                                                                                                        |
|    |                                                                                                                                                        |
|    |                                                                                                                                                        |
|    |                                                                                                                                                        |
|    |                                                                                                                                                        |
|    |                                                                                                                                                        |
|    |                                                                                                                                                        |





# <u>Sub-Section [2.2.4]</u>: Find the Relative Isotopic Abundance from a Compound's RAM / Molar Mass

| Question 25 (2 marks)                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The relative atomic mass of an element Y is 63.55. If the element consists of two isotopes with masses 63 and 65 determine the percentage abundance of each isotope.  |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
| Question 26 (3 marks)                                                                                                                                                 |
| An element Z has a relative atomic mass of 20.18 and consists of two isotopes: Z-20 and Z-22. Find the percentage abundance of each isotope and identify the element. |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
| Space for Personal Notes                                                                                                                                              |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |
|                                                                                                                                                                       |

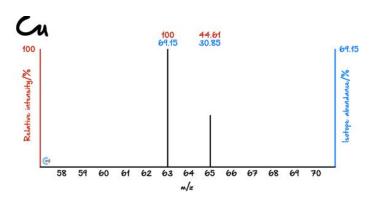


| Qu  | nestion 27 (4 marks)                                                                              |
|-----|---------------------------------------------------------------------------------------------------|
| Iro | n has two main isotopes we are interested in, Fe-54 and Fe-56.                                    |
| a.  | Determine the percentage abundance of each isotope. (2 marks)                                     |
|     |                                                                                                   |
| b.  | Would this change if we were looking at Fe <sup>2+</sup> or Fe <sup>3+</sup> ? Explain. (2 marks) |
|     |                                                                                                   |
|     |                                                                                                   |
| Qu  | nestion 28 (8 marks)                                                                              |
| The | e relative atomic mass of an element Q is 10.81. It has two isotopes, Q-10 and Q-11.              |
| a.  | Calculate the percentage abundances of each isotope. (2 marks)                                    |
|     |                                                                                                   |
|     |                                                                                                   |
| b.  | Identify the element identity of element Q. (1 mark)                                              |
|     |                                                                                                   |
|     |                                                                                                   |
|     |                                                                                                   |
|     |                                                                                                   |



| c. | In the case of two isotopes that exist for the element Q, explain why we only need the abundance of one of the isotopes and not the other. (2 marks) |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                      |
| d. | What would you need to calculate the abundances of a compound with three main isotopes? (2 marks)                                                    |
|    |                                                                                                                                                      |
| e. | What is the isotopic symbol for the less abundant isotope? (1 mark)                                                                                  |
|    | ,                                                                                                                                                    |
| Sp | ace for Personal Notes                                                                                                                               |
|    |                                                                                                                                                      |
|    |                                                                                                                                                      |
|    |                                                                                                                                                      |
|    |                                                                                                                                                      |
| 11 |                                                                                                                                                      |

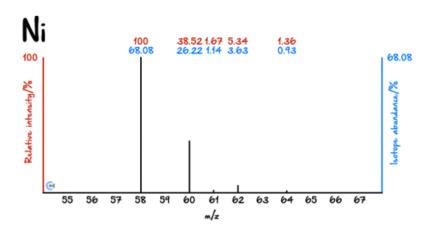





### Sub-Section [2.2.5]: Apply Mass Spectrum Readings To RAM & Amp; **Relative Isotopic Abundance Calculations**

# Question 29 (2 marks)



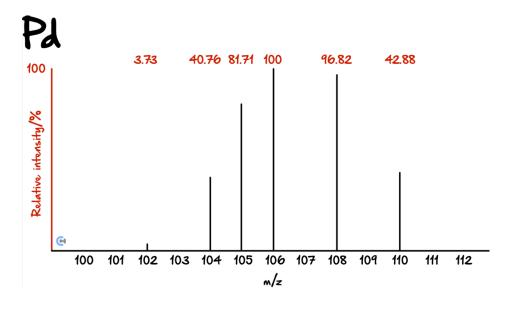

Find the relative atomic mass of Copper below.



#### Question 30 (2 marks)



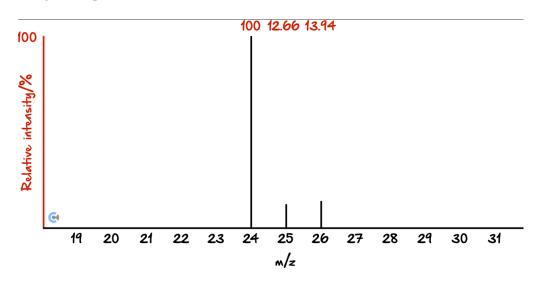
Find the relative atomic mass for Nickel given the following mass.






#### Question 31 (3 marks)




The mass spectrum of Palladium is shown below. Determine the relative atomic mass of Palladium.



#### Question 32 (7 marks)



Given the following mass spectrum.





| a. | Determine the relative atomic mass. (2 marks)                                                            |   |
|----|----------------------------------------------------------------------------------------------------------|---|
|    |                                                                                                          | - |
|    |                                                                                                          | - |
| b. | What is the compound most likely going to be? (1 mark)                                                   |   |
|    |                                                                                                          | - |
| c. | Does it matter if the relative intensity of all recorded isotopes is above 100%? (2 marks)               |   |
|    |                                                                                                          | - |
|    |                                                                                                          | - |
| d. | Would you expect the result of a mass spectrum from Mg to be different from Mg <sup>2+</sup> ? (2 marks) |   |
|    |                                                                                                          | - |
|    |                                                                                                          | - |
|    |                                                                                                          |   |
| Sp | ace for Personal Notes                                                                                   |   |
|    |                                                                                                          |   |



### Section C: [2.3] - Stoichiometry (79 Marks)



### <u>Sub-Section [2.3.1]</u>: Write Balanced Chemical Equations, Including Combustion

Question 33 (1 mark)



Balance the equation where CH<sub>4</sub> reacts with oxygen gas to form carbon dioxide and water.

Question 34 (4 marks)



Balance the following equations:

**a.**  $KClO_3 \rightarrow KCl + O_2$ . (1 mark)

**b.**  $CH_3OH + O_2 \rightarrow H_2O + CO_2$ . (1 mark)

c.  $Ca(OH)_2 + HCl \rightarrow CaCl_2 + H_2O$ . (1 mark)

**d.**  $AgCl + Mg(NO_3)_2 \rightarrow MgCl_2 + AgNO_3$ . (1 mark)



| Question 35 (4 marks)                       | الألا |
|---------------------------------------------|-------|
| Balance the following combustion equations: |       |
| a. Ethanol's complete combustion. (2 marks) |       |
| b. Decane's complete combustion. (2 marks)  |       |
|                                             | U     |

| Qι | Question 36 (7 marks)                                                                                  |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------|--|--|--|--|
| Co | nsider the combustion equation of butanol.                                                             |  |  |  |  |
| a. | Write the balanced equation, assuming that CO <sub>2</sub> and H <sub>2</sub> O is produced. (2 marks) |  |  |  |  |
|    |                                                                                                        |  |  |  |  |
| b. | Now, consider when CO and H <sub>2</sub> O is produced. (1 mark)                                       |  |  |  |  |
| c. | Why is it suggested that we balance carbon last in a chemical equation generally? (2 marks)            |  |  |  |  |
|    |                                                                                                        |  |  |  |  |
|    |                                                                                                        |  |  |  |  |
|    |                                                                                                        |  |  |  |  |



| d. | d. A student argues that we can have more matter at the end of a reaction as we are inputting energy into the reaction system, as a combustion reaction usually results in our fuel disappearing over time. Evaluate this |  |  |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|    | statement. (2 marks)                                                                                                                                                                                                      |  |  |  |  |
|    |                                                                                                                                                                                                                           |  |  |  |  |
|    |                                                                                                                                                                                                                           |  |  |  |  |
|    |                                                                                                                                                                                                                           |  |  |  |  |
|    |                                                                                                                                                                                                                           |  |  |  |  |
|    |                                                                                                                                                                                                                           |  |  |  |  |
|    |                                                                                                                                                                                                                           |  |  |  |  |
| Sp | pace for Personal Notes                                                                                                                                                                                                   |  |  |  |  |
|    |                                                                                                                                                                                                                           |  |  |  |  |
|    |                                                                                                                                                                                                                           |  |  |  |  |
|    |                                                                                                                                                                                                                           |  |  |  |  |
|    |                                                                                                                                                                                                                           |  |  |  |  |
|    |                                                                                                                                                                                                                           |  |  |  |  |
|    |                                                                                                                                                                                                                           |  |  |  |  |
|    |                                                                                                                                                                                                                           |  |  |  |  |
|    |                                                                                                                                                                                                                           |  |  |  |  |
|    |                                                                                                                                                                                                                           |  |  |  |  |
|    |                                                                                                                                                                                                                           |  |  |  |  |
|    |                                                                                                                                                                                                                           |  |  |  |  |
|    |                                                                                                                                                                                                                           |  |  |  |  |
|    |                                                                                                                                                                                                                           |  |  |  |  |
|    |                                                                                                                                                                                                                           |  |  |  |  |
|    |                                                                                                                                                                                                                           |  |  |  |  |





### <u>Sub-Section [2.3.2]</u>: Apply Stoichiometry to Find the Amount of Another Substance Used / Produced

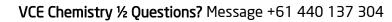
| Question 37 (2 marks)                                                                                         |  |
|---------------------------------------------------------------------------------------------------------------|--|
| Given the equation:                                                                                           |  |
| $2\text{KClO}_3 \rightarrow 2\text{KCl} + 3\text{O}_2$                                                        |  |
| If 5.50 moles of KClO <sub>3</sub> reacts, then how much oxygen gas would be produced, in moles?              |  |
|                                                                                                               |  |
|                                                                                                               |  |
|                                                                                                               |  |
| Question 38 (4 marks)                                                                                         |  |
| Given the following equation:                                                                                 |  |
| $2Al_2O_3 \rightarrow 4Al + 3O_2$                                                                             |  |
| <b>a.</b> If $7.00 g$ of $Al_2O_3$ decomposes, how many grams of $O_2$ gas would be produced? (2 marks)       |  |
|                                                                                                               |  |
|                                                                                                               |  |
|                                                                                                               |  |
| <b>b.</b> If 3.00 $g$ of oxygen gas was produced how much $Al_2O_3$ would've been needed, in grams? (2 marks) |  |
|                                                                                                               |  |
|                                                                                                               |  |
|                                                                                                               |  |

#### Question 39 (4 marks)



Given the combustion of 8.49 g of propanol,  $C_3H_7OH$ , calculate the total mass of gases released, assuming the reaction occurred at  $120^{\circ}C$ .

#### **Question 40** (9 marks)




Consider the following chemical equation:

$$H_3PO_4 + KOH \rightarrow K_3PO_4 + H_2O$$

**a.** Balance the above equation as it is currently unbalanced. (1 mark)

**b.** If 665.42 *g* of phosphoric acid (H<sub>3</sub>PO<sub>4</sub>) reacted, how many moles of water were produced? (2 marks)





| c. | Coı                      | nsider if $8.15  mol$ of $K_3 PO_4$ was produced.                                                 |  |  |  |
|----|--------------------------|---------------------------------------------------------------------------------------------------|--|--|--|
|    | i.                       | How many moles of phosphoric acid were used up? (2 marks)                                         |  |  |  |
|    |                          |                                                                                                   |  |  |  |
|    | ii.                      | How much water was also produced? (2 marks)                                                       |  |  |  |
|    |                          |                                                                                                   |  |  |  |
|    | iii.                     | What is the mass of KOH required to get this amount of K <sub>3</sub> PO <sub>4</sub> ? (2 marks) |  |  |  |
|    |                          |                                                                                                   |  |  |  |
|    |                          |                                                                                                   |  |  |  |
|    |                          |                                                                                                   |  |  |  |
| Sp | Space for Personal Notes |                                                                                                   |  |  |  |
|    |                          |                                                                                                   |  |  |  |
|    |                          |                                                                                                   |  |  |  |
|    |                          |                                                                                                   |  |  |  |
|    |                          |                                                                                                   |  |  |  |
|    |                          |                                                                                                   |  |  |  |
|    |                          |                                                                                                   |  |  |  |
|    |                          |                                                                                                   |  |  |  |
|    |                          |                                                                                                   |  |  |  |
|    |                          |                                                                                                   |  |  |  |
|    |                          |                                                                                                   |  |  |  |
|    |                          |                                                                                                   |  |  |  |





### <u>Sub-Section [2.3.3]</u>: Identify the Limiting Reagent When Reactants' Amounts are Known

| Question 41 (2 marks)                                                                                       | <b></b> |
|-------------------------------------------------------------------------------------------------------------|---------|
| Consider the reaction:                                                                                      |         |
| $Ca(OH)_2 + 2HCl \rightarrow CaCl_2 + 2H_2O$                                                                |         |
| There are $13.00 g$ of $Ca(OH)_2$ and $5.00 g$ of HCl, determine what the limiting and excess reagents are. |         |
|                                                                                                             |         |
|                                                                                                             |         |
|                                                                                                             |         |
|                                                                                                             |         |

**Question 42** (4 marks)



9.55~g of  $Na_3PO_4$  and 7.31~g of  $CaCl_2$  are mixed and allowed to react according to this equation:

$$2 \text{Na}_3 \text{PO}_4 + 3 \text{CaCl}_2 \rightarrow \text{Ca}_3 (\text{PO}_4)_2 + 6 \text{NaCl}$$

**a.** Which reactant is the limiting reagent? Which reactant is in excess? (2 marks)

**b.** What is the mass of  $Ca_3(PO_4)_2$  that is formed? (2 marks)

Question 43 (6 marks)

Consider the following reaction:  $N_2 + 3H_2 \rightarrow 2NH_3$ There are 14.00 g of  $N_2$  and 4.00 g of  $H_2$ .

a. What are the limiting and excess reagents? (2 marks)

**b.** Find the mass of NH<sub>3</sub> formed. (2 marks)

| c. | In another experiment, if 25.5 $g$ of NH $_3$ was formed, how much H $_2$ was used initially in grams? (2 marks |
|----|-----------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                 |
|    |                                                                                                                 |
|    |                                                                                                                 |



| Qu | esti | on 44 (9 marks)                                                                             |
|----|------|---------------------------------------------------------------------------------------------|
| Co | nsid | er the combustion reaction of pentane at 200°C.                                             |
| a. | Wr   | ite the fully balanced reaction. (1 mark)                                                   |
|    |      |                                                                                             |
| b. | Co   | nsider an experiment where we had $44.00 g$ of pentane and $160.00 g$ of oxygen gas.        |
|    | i.   | What are the limiting and excess reagents? (2 marks)                                        |
|    |      |                                                                                             |
|    |      |                                                                                             |
|    |      |                                                                                             |
|    | Per  | ntane is the limiting reagent and oxygen gas is the excess.                                 |
|    | ii.  | What is the mass of gases formed? (2 marks)                                                 |
|    |      |                                                                                             |
|    |      |                                                                                             |
|    |      | <del></del>                                                                                 |
|    |      |                                                                                             |
|    | iii. | Is this the same as the total mass of gases left over at the end of the reaction? (2 marks) |
|    |      |                                                                                             |
|    |      |                                                                                             |
|    |      |                                                                                             |



| <b>c.</b> In another experiment, if $88.00 g$ of $CO_2$ was formed, how much $O_2$ was used initially in grams? (2 marks) |
|---------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
| Space for Personal Notes                                                                                                  |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |





# <u>Sub-Section [2.3.4]</u>: Apply Limiting Reagent to Calculate the Mass of Product(s) Formed, & the Amount of Excess Reagent Leftover

| Qu  | estion 45 (3 marks)                                                                                                                    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|
| Giv | en the following reaction:                                                                                                             |
|     | $CaCl_2 + NaOH \rightarrow Ca(OH)_2 + NaCl$                                                                                            |
| a.  | Balance the equation. (1 mark)                                                                                                         |
|     |                                                                                                                                        |
|     | A sample of $5.00$ moles of $CaCl_2$ and $5.00$ moles of NaOH reacts. What is the amount of $CaCl_2$ that would be leftover? (2 marks) |
|     |                                                                                                                                        |
|     |                                                                                                                                        |
|     |                                                                                                                                        |

| <b>Question 46</b> (4 mar | rks) |
|---------------------------|------|
|---------------------------|------|



An experiment is conducted according to the following equation:

**a.** Which is the excess and limiting reagent? (2 marks)

$$MnS + 2HCl \rightarrow H_2S + MnCl_2$$

If a sample contained 50.00 g of MnS and 26.00 g of HCl, determine the excess and limiting reagent. (2 marks

| _ | 0 | ` | , |
|---|---|---|---|
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |

**b.** What is the amount leftover of the reactants? (2 marks)

Question 47 (7 marks)



Given the following reaction:

$$3\text{Na}_2\text{CO}_3(s) + 2\text{HCl}(aq) \rightarrow 6\text{NaCl}(aq) + 3\text{CO}_2(g) + \text{H}_2\text{O}(l)$$

**a.** Given that there was  $9.40 \ g$  of sodium carbonate and  $8.90 \ g$  of hydrogen chloride, find the limiting and excess reagents. (3 marks)

Therefore, the sodium carbonate is limiting, and hydrogen chloride is excess.

**b.** Find the mass of NaCl and CO<sub>2</sub> that will be produced. (2 marks)

c. What is the mass of the excess reagent left over? (2 marks)

Question 48 (9 marks)



Given the following reaction:

$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$$

**a.** Given that there was 5.03 g of NH<sub>3</sub> and 3.45 g of O<sub>2</sub>, find the limiting and excess reagents. (2 marks)

- **b.** After the reaction is completed, some of the excess reagent remains.
  - i. Find the amount of excess reagent that is left over. (2 marks)

ii. Find the mass of the excess reagent that is left over. (1 mark)



|    | iii. Find the mass of gases produced. (2 marks)                                                                                                       |  |  |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|    |                                                                                                                                                       |  |  |  |  |  |  |
| c. | What is the amount, in grams, of the current limiting reagent we need to add to turn the reaction into one where the reactants fully react? (2 marks) |  |  |  |  |  |  |
|    |                                                                                                                                                       |  |  |  |  |  |  |
|    |                                                                                                                                                       |  |  |  |  |  |  |
|    |                                                                                                                                                       |  |  |  |  |  |  |
| Sp | pace for Personal Notes                                                                                                                               |  |  |  |  |  |  |



## Section D: [2.1-2.3] Overall (VCAA Qs) (60 Marks)

| Question 49 (3 marks)                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Find the number of particles in the following:                                                                                                       |
| <b>a.</b> In 2 moles of $O_2$ , find the number of oxygen atoms. (1 mark)                                                                            |
| <b>b.</b> In 4 moles of CaCl <sub>2</sub> , find the number of chloride ions. (1 mark)                                                               |
| c. If there are $9.03\times10^{24}$ particles of fluorine atoms in a sample of $F_2$ gas, find the number of moles of $F_2$ . (1 mark)               |
|                                                                                                                                                      |
| Question 50 (5 marks)                                                                                                                                |
| For the following samples, calculate the amount required.<br><b>a.</b> Given that there is $5.0 g$ of $CO_2$ , calculate the moles present. (1 mark) |
|                                                                                                                                                      |



| b. | Given that there is 14.6 $g$ of NH <sub>3</sub> , calculate the moles of ammonia. (1 mark)        |
|----|---------------------------------------------------------------------------------------------------|
|    |                                                                                                   |
|    |                                                                                                   |
| c. | Given that there are 1.50 moles of CaCl <sub>2</sub> , calculate the mass present. (1 mark)       |
|    |                                                                                                   |
| d. | Given that there are 3.00 moles of $K_2SO_4$ , calculate the mass present. (1 mark)               |
|    |                                                                                                   |
| e. | Given that there is $4.56 \times 10^{-3} \ mol \ Na_2CO_3$ , calculate the mass present. (1 mark) |
|    |                                                                                                   |
|    |                                                                                                   |
| Sp | pace for Personal Notes                                                                           |
|    |                                                                                                   |
|    |                                                                                                   |
|    |                                                                                                   |

| Question 51 (2 marks)                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Neon has three naturally occurring isotopes: Ne-20, Ne-21, Ne-22. Their relative abundances are 90.48%, 0.27%, and 9.25% respectively. Calculate the relative atomic mass of neon. |
|                                                                                                                                                                                    |
|                                                                                                                                                                                    |
|                                                                                                                                                                                    |
| Question 52 (2 marks)                                                                                                                                                              |
| The relative atomic mass of an element Y is 10.81. It has two isotopes: Y-10 and Y-11. Determine the percentage abundance of each isotope.                                         |
|                                                                                                                                                                                    |
|                                                                                                                                                                                    |
|                                                                                                                                                                                    |
|                                                                                                                                                                                    |
| Question 53 (4 marks)                                                                                                                                                              |
| For the following, find the percentage composition of all the elements in the compound.                                                                                            |
| <b>a.</b> $Mg_3(PO_4)_2$ . (2 marks)                                                                                                                                               |
|                                                                                                                                                                                    |
|                                                                                                                                                                                    |
|                                                                                                                                                                                    |
|                                                                                                                                                                                    |
|                                                                                                                                                                                    |

**b.** Ca(NO<sub>3</sub>)<sub>2</sub>. (2 marks)

**Question 54** (4 marks)



The following reaction occurred in an experiment:

$$FeCl_3 + 3NaOH \rightarrow Fe(OH)_3 + 3NaCl$$

There are 1.80 grams of  $FeCl_3$  and 4.20 grams of NaOH.

**a.** What are the limiting and excess reagents? (2 marks)

**b.** Find the mass of NaCl and Fe(OH)<sub>3</sub> formed. (2 marks)

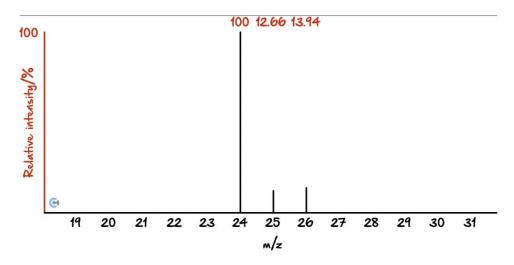
| Space | for | Personal | Notes |
|-------|-----|----------|-------|



| Qu         | estion 55 (5 marks)                                                                                                          |
|------------|------------------------------------------------------------------------------------------------------------------------------|
| Co         | nsider the compound, ammonium sulphate, $(NH_4)_2SO_4$ .                                                                     |
| a.         | What is its molar mass? (1 mark)                                                                                             |
|            |                                                                                                                              |
| <b>b.</b>  | Given that a sample contains $4.28 \times 10^{-3}  kg$ , what is the number of moles present in ammonium sulphate? (2 marks) |
|            |                                                                                                                              |
| <b>:</b> . | Now, based on your answer, find the mass of nitrogen in the sample, expressed in micrograms. (2 marks)                       |
|            |                                                                                                                              |
|            |                                                                                                                              |
| Sp         | ace for Personal Notes                                                                                                       |
|            |                                                                                                                              |
|            |                                                                                                                              |
|            |                                                                                                                              |






| Qu | nestion 56 (5 marks)                                                                                                     |
|----|--------------------------------------------------------------------------------------------------------------------------|
| Co | onsider the compound of $Ca(NO_3)_3$ .                                                                                   |
| a. | What is the molar mass? (1 mark)                                                                                         |
| b. | Given that a sample contains $6.240 \times 10^{-4}  kg$ , what is the number of moles present in the compound? (2 marks) |
| c. | Based on your answer, find the atoms of oxygen in the sample. (2 marks)                                                  |
|    |                                                                                                                          |
|    |                                                                                                                          |
| Sp | pace for Personal Notes                                                                                                  |



Question 57 (3 marks)



Find the relative atomic mass given the following mass spectrum and identify the compound.



Question 58 (7 marks)



Consider the reaction:

$$Ca(OH)_2 (aq) + 2HCl (aq) \rightarrow CaCl_2 (aq) + 2H_2O (l)$$

**a.** If there are 2.78 g of  $Ca(OH)_2$  and 3.65 g of HCl, find the limiting reagent. (3 marks)

| b. | What mass of the excess reagent will be left over? (2 marks)                                                                                                      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| c. | If 9.88 g of CaCl <sub>2</sub> was produced, what is the mass of Ca(OH) <sub>2</sub> required to produce this, assuming the reaction is 100% efficient? (2 marks) |
|    |                                                                                                                                                                   |
| Qu | <b>Destion 59</b> (10 marks)                                                                                                                                      |
|    | onsider an experiment where the aim is to experimentally determine Avogadro's number using a sample of minium sulphate, $Al_2(SO_4)_3$ .                          |
| a. | What is the molar mass of aluminium sulphate? (1 mark)                                                                                                            |
| b. | Calculate the number of moles of aluminium sulphate in a 52 mg sample. (2 marks)                                                                                  |
|    |                                                                                                                                                                   |
|    |                                                                                                                                                                   |
|    |                                                                                                                                                                   |
|    |                                                                                                                                                                   |
|    |                                                                                                                                                                   |
|    |                                                                                                                                                                   |





Question 60 (10 marks)

Given the following reaction:

$$Al(s) + Cl_2(g) \rightarrow AlCl_3(s)$$

- **a.** Balance the reaction. (1 mark)
- **b.** If  $5.40 \ g$  of aluminium is reacted, how much aluminium chloride would be produced? (2 marks)

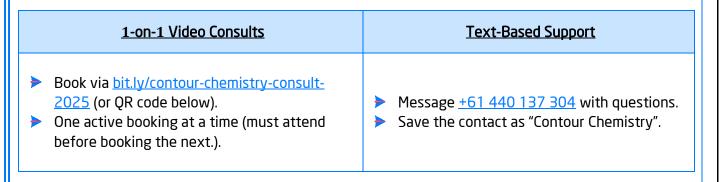
c. If there is 5.40 g of Al and 9.48 g of  $Cl_2$ , which is the limiting and excess reagent? (3 marks)

| d. | Find the | mass | of AlCl <sub>2</sub> | produced. | (2 marks) |
|----|----------|------|----------------------|-----------|-----------|



| e. How much of the excess reagent, in $kg$ , is left at the end of the reaction? (2 marks)  Space for Personal Notes |
|----------------------------------------------------------------------------------------------------------------------|
|                                                                                                                      |
| Space for Personal Notes                                                                                             |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |
|                                                                                                                      |




Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

### VCE Chemistry ½

# Free 1-on-1 Support

#### Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After-school weekdays and all-day weekends.



Booking Link for Consults
bit.ly/contour-chemistry-consult-2025



Number for Text-Based Support +61 440 137 304

