

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Chemistry ½ Moles & Molar Mass [2.1]

Workbook

Outline:

Moles

Pg 3-17

- Introduction to Moles
- Moles of Molecules & Atoms
- Significant Figures

Molar Mass

Pg 18-32

- Introduction to Molar Mass
- Significant Figures for Addition & Subtraction
- Using Molar Mass

Different Units of Measurement

Converting between units

Pg 33-39

Key Formulae:

$$n=\frac{N}{N_A}$$

$$n=\frac{m}{M}$$

Learning Objectives:

- CH12 [2.1.1] Apply Avogadro's number to mole & particle calculations $(n = N/N_a)$
- CH12 [2.1.2] Apply molar mass to mole calculations using $n = \frac{m}{M}$
- CH12 [2.1.3] Apply unit conversions to calculation questions

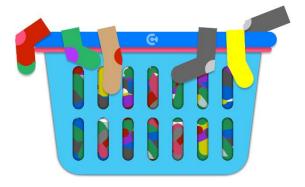
Section A: Moles

Sub-Section: Introduction to Moles

Context

- V
- Atomic Models: Different models of atoms and types of bonding have been explored.
- Small Scale: Chemistry deals with very small atoms.
- Counting Atoms: Sometimes it is necessary to determine the number of atoms.

Exploration: Introduction to Moles


 \blacktriangleright Consider 12.00 g of carbon (C):

- Atoms of carbon: ______
- lssue: there are large number of particles, cannot continuously use such large numbers.

What is the solution?

Consider a basket of 36 socks:

Different Method of Counting:

<u>In Pairs</u>	<u>In Dozens</u>

> Solution: Chemists 'group up' particles with new unit ______.

NOTE: The symbol to denote moles is 'n' and not 'm'

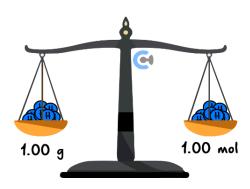
ALSO NOTE: The 'unit' for moles is 'mol' (without the 'e').

History: Amedeo Avogadro

Amedeo Avogadro, 1776 - 1856

Amedeo Avogadro came up with Avogadro's Number.

Let's look at simple example , hydrogen first!


Exploration: Avogadro's Definition of a Mole

Consider Hydrogen:

H

Definition:

1.00 g = 1.00 mol of hydrogen

- Number of atoms in 1.00 g of Hydrogen: ______
- Constant Name: ______.

Avogadro's Number

Definition

- Definition:
 - A constant/number which relates the number of particles to the number of moles.
 - It can be found on page 4 of the databook.

Denoted By	<u>SI Unit</u>	<u>Formulae</u>
N_a	mol^{-1}	$N_a = 6.02 \times 10^{23} mol^{-1}$

NOTE: Just like how 1 dozen of eggs = 12 eggs, 1 mole of a substances = 6.02×10^{23} atoms.

Exploration: Mole Calculations

- If one mole is 6.02×10^{23} atoms, how many atoms are present in two moles of carbon?
- > Formula:
- Rearranged Formula:

$$n = \underline{\hspace{1cm}}$$

Definition

Number of Particles

Equation:

$$N = N_A \times n$$

<u>Term</u>	What it represents
N	number of particles (no unit).
N_A	vogadro's Number (6.02 $ imes 10^{23}~mol^{-1}$).
n	number of moles (mol) .

NOTE: This formula is not in the Data Book

Misconception

"The unit 'moles' can only be used to count the number of atoms present"

TRUTH: Moles can be used to calculate the amount of anything present.

Example 6.02×10^{23} stars, same as one mole of stars!

Let's have a look at a question together!

7		
	-4	
		T

Ouestion	1	Walkthrough.
Oucsuon	1	waikun uuzn.

a. Given that there are 2.5 dozen eggs, determine how many eggs are present

b. Given that there are 3.721 *mol* of hydrogen (H₂), determine how many molecules of hydrogen are present.

TIP: While moles might seem intimidating at first, just remember that it is simply just another unit of measurement to measure how much of something we have!

Active Recall: Complete the table below

	N	<u>N</u> _A	<u>n</u>
What it represents			

Let's have a look at this in a different form!

 a. Given that there are 40 eggs, determine how many dozens of eggs are present. b. Given that there are 1.05 × 10²⁵ atoms of sodium, determine how many moles of sodium are present. 		
b. Given that there are 1.05×10^{25} atoms of sodium, determine how many moles of sodium are present.		
b. Given that there are 1.05×10^{25} atoms of sodium, determine how many moles of sodium are present.		
b. Given that there are 1.05×10^{25} atoms of sodium, determine how many moles of sodium are present.		
TIP: Make sure you use brackets in your calculator when dividing by Avogadro's constant		
Recall!		
Active Recall: What's the formula to calculate the number of moles from the number of particles?		
Space for Personal Notes		
Space for Personal Notes		

Your Turn!

Question 3			
a.	Calculate the number of atoms of in 5.2 <i>mol</i> of sulphur (S).		
	··		
b.	Calculate the number of atoms in 0.5 mol of nitrogen (N).		
	, 		
•			

Question 4

- a. Calculate the number of moles if there are 2.1×10^{24} atoms of neon (Ne).
- **b.** Calculate the number of moles if there are 10 atoms of helium (He).

TIP: Use logic to check if the answer you calculated makes sense!

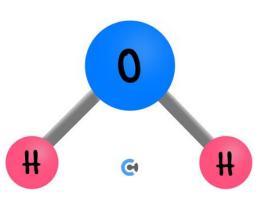
Question 5 Additional.

VCE Chemistry ½ Questions? Message +61 440 137 304

there are 2 mol of H ₂ molecules, state the amount of hydrogen atoms present, in mol?	
Space for Personal Notes	

Sub-Section: Moles of Molecules & Atoms

<u>Discussion:</u> If there are 12 moles of water, how many moles of hydrogen atoms and oxygen atoms are there?



Let's take a look at this idea!

Exploration: Moles of Molecules & Atoms

Consider water (H₂0):

For every one molecule of water:

Atoms of Oxygen (0)	Atoms of Hydrogen (H)

For seven molecules of water:

Atoms of Oxygen (0)	Atoms of Hydrogen (H)

For every **five dozens** of molecules water:

Atoms of Oxygen (0)	Atoms of Hydrogen (H)

For every five moles of molecules water:

Atoms of Oxygen (0)	Atoms of Hydrogen (H)

Moles of Molecules & Atoms

- Each water molecule has _____ oxygen atom and _____ hydrogen atoms
 - When determing moles of atoms from a molecule: must consider ratios

Let's look at some questions together!

Qu	Question 6 Walkthrough.	
a.	Given that there are 8.02×10^{23} molecules of oxalate ions ($C_2O_4^{\ 2^-}$), determine how many moles of oxalate are present.	
b.	Hence, how many moles of atoms are present in total?	
	Your Turn!	
Qu	testion 7	
a.	Calculate the number of oxygen molecules (O_2) in 3.5 mol of oxygen gas (O_2)	
b.	Calculate the number of oxygen atoms present.	

Question	8
Oucsuon	O

Swastik is investigating ammonia (NH₃).

- **a.** If there are $3.10 \, mol$ of ammonia (NH₃), find the amount (in mol) of:
 - i. Nitrogen atoms present.
 - ii. Hydrogen atoms present.
- **b.** If 6.00 *mol* of hydrogen atoms are found from ammonia (NH₃) molecules, find the amount, in mol, of ammonia molecules which are present.

Question 9 Additional.

Which of the following does **not** contain one mole of hydrogen atoms?

- A. $1.0 \text{ mol } \text{of OH}^-$ (aq) ions.
- **B.** 3.01×10^{23} water molecules.
- C. $0.25 \, mol \, of ammonium ions (NH₄⁺ (aq)).$
- **D.** $1.0 \ mol \ of \ H_2 \ (g)$.

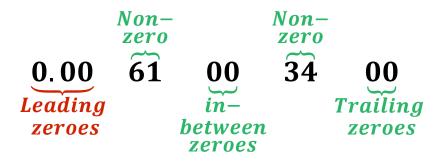
Sub-Section: Significant Figures

Context

- So far: giving our answers to a random number of decimal places
- International System: defines exact precision standards.

<u>Discussion:</u> How do we know how many decimal places our final answer should be to in any question?

Exploration: Significant Figures


- **Level of Precision Used:** as precise as the [most] / [least] precise measurement
- Link to Significant Figures: use the [smallest] / [greatest] number of significant figures available in the question to express our answer.

Significant Figures

Definition: Significant figures tell us how ______ a measurement is.

- Rules:
 - Non-zero digits: [significant] / [non-significant]
 - In-between zeros: [significant] / [non-significant]
 - Trailing zeros: [significant] / [non-significant]
 - Leading zeros: [significant] / [non-significant]
- **When Answering:** Use the [smallest] / [greatest] number of significant figures available in the question to express our answer.

Scientific Notation

- Expression: one non-zero digit to the left of the decimal, multiplied by a power of ten.
- Consider the following number:

$$6.1003400 \times 10^{-3}$$

- Correctly expressed in scientific notation: [Yes] / [No]
- Number of significant figures:

Let's look at some questions together!

For each of the following questions, complete the associated table.

a. 100302

Current Number of Signifciant Figures	Expressed to 3 signficant figures

b. 0.023810

Current Number of Signifciant Figures	Expressed to 5 signficant figures

c. 1.99

Current Number of Signifciant Figures	Expressed to 2 signficant figures

Space fo	r Personal	Notes
----------	------------	-------

Question 11

Write each of the following to the number of significant figures indicated.

a. 10000 (2 sig figs)

c. 0.0911 (2 sig figs)

b. 12345 (3 sig figs)

Question 12

To calculate the number of atoms there are in 4.000 mol of calcium, state the number of significant figures your final answer should be to.

NOTE: Significant figures are accounted for using values in the question, as well as any Data Book values used!

Section B: Molar Mass

Sub-Section: Introduction to Molar Mass

We have now covered moles quite a bit, but we see that mass is slightly different to moles.

Discussion: If we have a carton of 1 dozen eggs, do we know how much it weighs?

Exploration: Introduction to Molar Mass

Consider different fruits:

<u>6.02 × 10²³ grapes</u>	<u>6.02 × 10²³ apples</u>
Amount (mol) present:	Amount (mol) present:

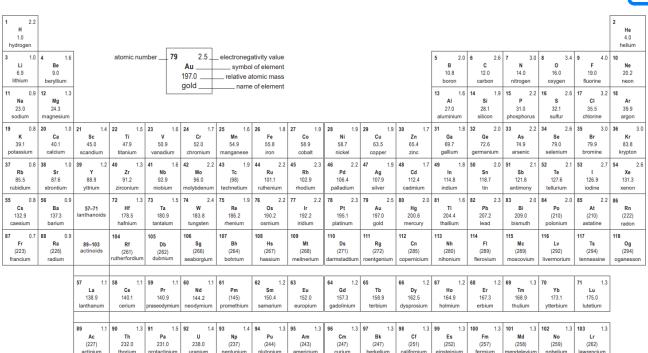
Amount: [Same] / [Different]

Weight: [Same] / [Different]

- Consider 10 of each fruit:
 - Geach grape is 5 g, mass of 10 grapes:
 - Each apple is 200 g, mass of 10 apples:
- ➤ The collective mass of 10 apples is [greater] / [less] than the collective mass of 10 grapes.

Expression: mass of a singular apple or grape:

<u>Mass per Grape</u>	<u>Mass per Apple</u>


Applied to atoms/molecules: idea of _____ comes in.

Molar Mass

- **Definition:**
 - \bullet The ratio between the mass (in g) and the amount of substance present (in mol).
 - It tells how heavy an atom/molecule is per mole.

<u>SI Units</u>	<u>Denoted By:</u>
g/mol	M or M _r

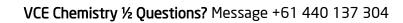
Molar Mass on the Periodic Table

Databook

- ▶ Data Book: page 12 14
- For instance, looking at the Data Book:
 - Molar mass of hydrogen:
 - Molar mass of fluorine:
- We see that the molar mass of substances is dependent on its [atomic] / [mass] number

Discussion: Why are some molar masses not whole numbers?

Exploration: Chlorine Molar Mass


- Molar mass of chlorine (Cl)?
- Does it have half a proton/neutron? [Yes] / [No]
- The 0.5 is obtained due to its ______ and its _____, which will be covered in the next booklet!

Let's look at some questions together!

Qu	stion 13 Walkthrough.
Fine	the molar mass of water (H ₂ O).

Question 14 Walkthrough.
Find the molar mass of sodium sulphate
NOTE: To obtain the molar mass of a substance, simply take the sum of the individual molar masses of all atoms which are contained in the substance.
Your Turn!
Question 15
Find the molar mass for the following molecules/compounds.
a. Hydrochloric acid (HCl)
b. Ammonia (NH ₃)
Space for Personal Notes

For each of the following ionic compounds, find its molar mass. Ensure to first find the formula of the compound a. Barium phosphate	Qu	estion 16
Duestion 17 Additional. Find the molar mass of each of the following. a. Hydrogen cyanide (HCN) b. Aluminum sulphite	For	each of the following ionic compounds, find its molar mass. Ensure to first find the formula of the compound
Question 17 Additional. Find the molar mass of each of the following. a. Hydrogen cyanide (HCN) b. Aluminum sulphite	a.	Barium phosphate
Question 17 Additional. Find the molar mass of each of the following. a. Hydrogen cyanide (HCN) b. Aluminum sulphite		
Question 17 Additional. Find the molar mass of each of the following. a. Hydrogen cyanide (HCN) b. Aluminum sulphite		
Find the molar mass of each of the following. a. Hydrogen cyanide (HCN) b. Aluminum sulphite	b.	Ammonium dichromate
Find the molar mass of each of the following. a. Hydrogen cyanide (HCN) b. Aluminum sulphite		
Find the molar mass of each of the following. a. Hydrogen cyanide (HCN) b. Aluminum sulphite		
Find the molar mass of each of the following. a. Hydrogen cyanide (HCN) b. Aluminum sulphite		
a. Hydrogen cyanide (HCN) b. Aluminum sulphite	Qu	estion 17 Additional.
b. Aluminum sulphite	Fin	d the molar mass of each of the following.
	a.	Hydrogen cyanide (HCN)
	_	
Space for Personal Notes	b.	Aluminum sulphite
Space for Personal Notes		
Space for Personal Notes		
Space for Personal Notes	<u></u>	aco for Porsonal Notos
	ЭÞ	ace for Personal Notes

Sub-Section: Significant Figures for Addition & Subtraction

Context

3

- > So far: significant figure rule for multiplication and division
- > Truth: another convention for significant figures when adding or subtracting numbers

Exploration: Significant Figures for Addition & Subtraction

Consider the following sum:

$$1.0 + 63.5$$

- Significant Figures for First Number: _____
- Significant Figures for Second Number: _____
- Significant Figures for Sum: _____
- Supposed Final Answer: _____
- Issue: lost some precision through this process.
- Solution: Use the lowest number of _____
- Consider the same sum again:

$$1.0 + 63.5$$

- Decimal Places for First Number: _____
- Decimal Places for Second Number: _____
- Decimal Places for Sum: ______
- Actual Final Answer: _____

Significant Figures for Addition & Subtraction

When adding or subtracting multiple quantities, the final answer must be expressed to the lowest number of [significant figures] / [decimal places]

-

Try a question

Question 18

Complete the following tables, ensuring to express your answers to the correct number of significant figures

a. Hydrobromic acid (HBr)

Molar mass:	Number of significant figures in molar mass

b. Ammonia (NH₃)

Molar mass:	Number of significant figures in molar mass

Question 19 Additional.

State the molecular formula of a molecule whose molar mass would only have 2 significant figures.

Sub-Section: Using Molar Mass

Now that we've covered molar mass a little in depth, let's have a look at how to use it!

Exploration: Using Molar Mass

- What is the molar mass of carbon (C)? _____
- This means for every one mole of carbon, it weighs _____ g!
- If we have two moles of carbon, how much will it weigh?
- > Formula:
- Formula Rearranged:

$$n = \underline{\hspace{1cm}}$$

Definition

Molar Mass:

$$n=\frac{m}{M}$$

Where:

<u>Term</u>	What it represents
N	is moles (in mol).
m	is mass (in g).
М	is molar mass (in g/mol).

Data Book: Page 3

Question 20 Walkthrough.			
Jenny is investigating sulphur dioxide (SO ₂), and has a vial containing 2.50 mol of it.			
a.	a)	Calculate the mass of SO2 present.	
L			
b.			
	i.	State the number of moles of oxygen atoms present.	
	ii.	Hence or otherwise, determine the number of individual oxygen atoms present.	
Space for Personal Notes			

CONTOUREDUCATION

TIP: Setting out Working Out

- When writing working out, there's a couple steps that you should follow:
 - 1. Write out the _____ used (e.g., $n = \frac{m}{M}$).
 - 2. _____ to make what we're trying to find the subject (e.g., $m = n \times M$).
 - 3. Write in _____ what atom/molecule/compound we're trying to find (e.g., $m(H_2O)$).
 - **4.** Write the actual _____ we are substituting into the formula (e.g., $m(H_20) = 10 \times 18$).
 - 5. Write the answer.
 - **6.** Restate the answer in the correct number of ______

Let's do one more question together!

Question 21 Walkthrough.

Find the mass of 10.0×10^{24} molecules of carbon dioxide (CO₂) in g.

TIP: If the question has multiple steps where we use values from previously used equations, make sure to use exact values (using the calculator), but you're allowed to write a rounded figure in your written working out.

C ONTOUREDUCATION	VCE Chemistry ½ Questions? Message +61 440 137 304
	Recall!
Active Recall: What are the 2 formulae whi	ch relate to moles?
	Your Turn!
Question 22 Find the mass (in g) of each of the following an	mounts:
a. 8.90 <i>mol</i> of nitrogen dioxide gas (NO ₂).	
b. 9.51×10^{25} molecules of nitric acid (HNO	J ₃).
Space for Personal Notes	

Question 23 Additional.
Find the mass of 1 molecule of ammonium sulphate (made of NH_4^+ & SO_4^{2-}), in g.
- <u></u>
Question 24 Additional.
Find the mass of 8.50 mol of sulphuric acid (H ₂ SO ₄)
Question 25 Additional.
The formula of glucose is $C_6H_{12}O_6$. The mass of 1 mole of glucose will be, in g .
A. 30
B. 72
C. 144
D. 180
Space for Personal Notes
Space for Fersonial Notes

Now that we've covered the moles and molar mass formula, how do we find the number of moles from the mass?

Let's look at some questions together!

Question 26 Walkthrough.			
49.0 g of copper sulphate, $CuSO_4$, was weighed out.			
a.	How many moles of CuSO ₄ was weighed?		
h	How many atoms of avvgan are present?		
D.	How many atoms of oxygen are present?		
			
S.	pace for Personal Notes		
31	iace for Personal Notes		

Question 27 a. Determine the amount of sulfur, in mol, in 200 g of sulfur. **b.** Calculate the amount of sulfur, in mol, in 1.28×10^{25} atoms of sulfur. **Question 28 a.** Calculate the molar mass of a substance, if you have $0.25 \, mol$ of the substance in a $4.50 \, g$ sample. **b.** Give a suggestion for which molecule this is. **Space for Personal Notes**

Question 29 Additional.

a. Determine the amount of oxygen, in mol, in 128 g of sulfur dioxide.

b. How many atoms of oxygen are there in 128 g of sulfur dioxide?

Question 30 Additional.

Which of the following represents the greatest number of mole of oxygen atoms?

- **A.** 96 g of oxygen atoms.
- **B.** 2.5 mole of ozone, O_3 .
- C. 2.4×10^{24} atoms of oxygen.
- **D.** 72 *g* of water.

Section C: Different Units of Measurement

Sub-Section: Converting Between Units

Context

- So Far: Using SI units
- > Reality: Have to use different units

Discussion: Why do we use other units?

Exploration: Use of non-SI Units

Consider a human being:

G Weight units: _____

Now consider an ant:

- G Weight units: _____
- We use non-SI Units for ______ purposes

To convert between these units, we can consult the Prefix Table!

₩ ₩ Databook

Prefix Table

Metric (including SI) prefixes.

Metric (including SI) prefixes	Scientific notation	Multiplying factor
giga (G)	10 ⁹	1 000 000 000
mega (M)	10^{6}	1 000 000
kilo (k)	10^{3}	1000
$deci\ (d)$	10^{-1}	0.1
centi (c)	10-2	0.01
milli (m)	10^{-3}	0.001
micro (μ)	10 ⁻⁶	0.000001
nano (n)	10 ⁻⁹	0.00000001
pico (p)	10 ⁻¹²	0.00000000001

Data Book: Page 4

<u>Discussion:</u> What units can you think of which starts with 'kilo-'?

Exploration: Prefixes

- Consider the units of kilometers and kilograms:
 - What do the letters represent? (Label Below)

- Meters in a kilometer (using own knowledge):
- Meters are in a kilometer (using Prefix Table):
- Consider the units of millimeters and milligrams:
 - What do the letters represent? (Label Below)

- Meters are in a millimeter (using own knowledge):
- Meters in a millimetre (using Prefix Table):

Exploration: Converting Between Different Units

- Sometimes, units are given with some **prefix**, such as g vs kg vs mg vs μg .
- ➤ Always convert to the _____ first when using equations!

How do we convert to SI Units?

- **►** Converting Specific Unit → SI Unit
 - **Method:** ______ by the number in the (scientific notation) column!
 - **Example**: Find the mass in grams of 3 kmol of H₂:

How do we convert to a specific unit?

- **►** Converting: SI Unit → Specific Unit
 - **G** Method: ______ by the number in the (scientific notation) column!
 - **Example**: Find the mass in ng of 8.75 mg of a substance:

TIP: Think about which unit is greater!

- **Converting:** Larger Unit \rightarrow Smaller Unit (e.g. $kg \rightarrow g$)
 - Smaller unit is worth [more]/[less], and thus there will be [more]/[less] of it for the same amount!
 - **Example:** from $kg \rightarrow g$, it is ______.
- ► Converting: Smaller Unit \rightarrow Larger Unit (e.g. $g \rightarrow kg$)
 - Larger unit is worth [more]/[less], and thus there will be [more]/[less] of it for the same amount!
 - **G** Example: from $g \rightarrow kg$, it is ______.

Non-SI Units

- Purpose: to make more ______ measurements of quantities
 - When going from a bigger to a smaller unit, there will be [more] / [less] of the same substance in the smaller unit, so we [multiply] / [divide] by the appropriate power of 10

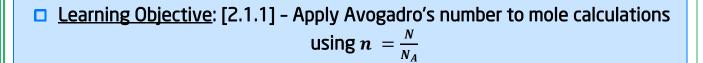
Let's have a look at a question together!

Question 31 Walkthrough.		
Find the mass in grams, if there are 7.30 pg of fluorine gas.		
Time the mass in grains, it there are the or marine gas.		
Question 32 Walkthrough.		
Find the amount (in mol) of phosphate ions in 730 μg of calcium phosphate.		

Your Turn!

7

Question 33				
So	me ionic compounds are investigated.			
a.	Find the amount of potassium ions, in mol, present in $2.0 kg$ of K_2SO_4 .			
b.	Find the amount of hydrogen present, in mol, in $5.0 mg$ of $Ba(OH)_2$.			
c.	All three of the above salts are dropped into a beaker of water and stirred well. Identify the state of matter of all three of the salts.			


Ouestion 34 Additional			
	Ougation	21	Additional

The mass of calcium	m that has the same i	number of atoms as 2	20 g of helium	will be closest to,	in g .

- **A.** 2
- **B.** 40
- **C.** 100
- **D.** 200

Space for Personal Notes		

Contour Check

Study Design

Avogadro's constant as the number 6.02×10^{23} indicating the number of atoms or molecules in a mole of any substance; determination of the amount, in moles, of atoms (or molecules) in a pure sample of known mass

Key Takeaways

Moles

Definition: The SI base unit for the ______ of substance in chemistry

<u>Denoted By</u>	<u>SI Units</u>

- **Definition:** A **constant/number** which relates the number of [particles] / [grams] to the number of moles.
- \square $N_A =$

n =

☐ When determing moles of **atoms** from a **molecule**: must consider **ratios**

Learning Objective: [2.1.2] Apply molar mass to mole calculations using $n = \frac{m}{M}$

Study Design

determination of the molar mass of compounds, the percentage composition by mass of covalent compounds, and the empirical and molecular formula of a compound from its percentage composition by mass

Key Takeaways

Molar Mass

- Definition:
 - \bigcirc The ratio between the mass (in g) and the amount of substance present (in mol).
 - It tells how heavy an atom/molecule is per mole.

<u>SI Units</u>	<u>Denoted By:</u>
g/mol	M or M _r

■ Molar mass values can be found by considering the [atomic] / [mass] numbers of elements

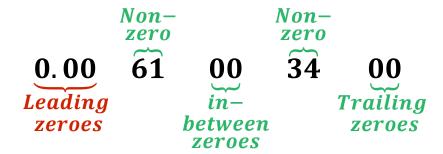
Molar Mass:

$$n =$$

■ Where:

<u>Term</u>	What it represents
N	is moles (in mol).
m	is mass (in g).
М	is molar mass (in g/mol).

□ <u>Learning Objective</u>: [2.1.3] Apply unit conversions to calculation questions


Study Design

use appropriate chemical terminology, representations and conventions, including standard abbreviations, graphing conventions, algebraic equations, units of measurement and significant figures

Key Takeaways

Significant Figures

Definition: Significant figures tell us how _______ a measurement is.

- Rules:
- Non-zero digits: [significant] / [non-significant]
- ☐ In-between zeros: [significant] / [non-significant]
- Trailing zeros: [significant] / [non-significant]
- Leading zeros: [significant] / [non-significant]
- When Answering: Use the [smallest] / [greatest] number of significant figures available in the question to express our answer.

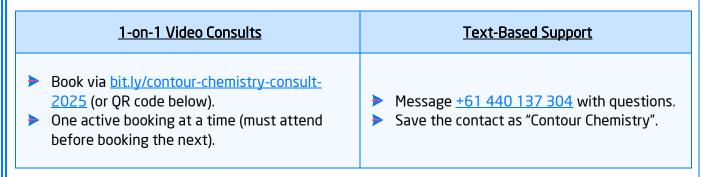
Scientific Notation

- **Expression:** one **non-zero digit** to the [left] / [right] of the decimal, multiplied by a power of ten.
- When adding or subtracting multiple quantities, the final answer must be expressed to the lowest number of [significant figures] / [decimal places]

Non-SI Units			
	Purpose: to make more measurements of quantities		
	When going from a bigger to a smaller unit, there will be [more] / [less] of the same substance in		

the smaller unit, so we [multiply] / [divide] by the appropriate power of 10

ONTOUREDUCATION


Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Chemistry ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

