CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Chemistry ½ Solubility & Precipitation [1.9]

Workbook

Outline:

Pg 25-40

Dissolution

- lon-dipole Bonds
- Strength of Bonds
- Dissolution

Pg 2-24

Precipitation

- Solubility
- Introduction to Precipitation
- Writing Full Precipitation Reactions

Learning Objectives:

- CH12 [1.9.1] Explain the process by which ionic compounds dissolve in water with reference to ion-dipole bonding
- CH12 [1.9.2] Write balanced equations for ionic compounds dissociating/ionising in water
- CH12 [1.9.3] Identify which compounds will or will not dissolve in water, with reference to SNAPE and/or solubility tables
- ☐ CH12 [1.9.4] Write full & ionic equations for precipitation reactions

Section A: Dissolution

Sub-Section: Ion-Dipole Bonds

<u>Databook:</u> Cations and Anions

The polyatomic ions which are tested are found on **Pages 6 and 7** of the Databook, and are shown below:

Cations

1+		2+		3+	
Name	Formula	Name	Formula	Name	Formula
ammonium	NH ₄ ⁺	barium	Ba ²⁺	aluminium Al ³⁺	
copper(I)	Cu⁺	calcium	Ca ²⁺	chromium(III)	Cr ³⁺
hydronium	H ₃ O⁺	copper(II)	copper(II) Cu ²⁺ iron(III)		Fe ³⁺
lithium	Li ⁺	iron(II)	Fe ²⁺	4+	
potassium	K ⁺	lead(II)	Pb ²⁺	titanium(IV) Ti ⁴⁺	
silver	Ag ⁺	magnesium	Mg ²⁺		
sodium Na ⁺		mercury(II)	Hg ²⁺		
		nickel(II)	Ni ²⁺		
		tin(II)	Sn ²⁺		
		zinc	Zn ²⁺		

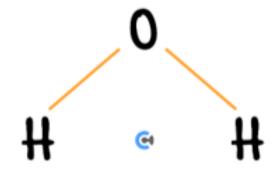
Anions

1-		2-		3-	
Name	Formula	Name	Formula	Name	Formula
bromide	Br ⁻	carbonate	CO ₃ ²⁻	citrate	C ₆ H ₅ O ₇ ³⁻
chlorate	CIO ₃ -	chromate	CrO ₄ ²⁻	nitride	N ³⁻
chloride	CI ⁻	dichromate	Cr ₂ O ₇ ²⁻	phosphate	PO ₄ ³⁻
chlorite	CIO ₂	monohydrogen phosphate	HPO ₄ ²⁻		
cyanide	CN-	oxide	O ²⁻		
dihydrogen phosphate	H ₂ PO ₄	peroxide	O ₂ ²⁻		
ethanoate	CH ₃ COO ⁻	sulfate	SO ₄ ²⁻		
fluoride	F-	sulfide	S ²⁻		
hydrogen carbonate	HCO ₃	sulfite	SO ₃ ²⁻		
hydrogen sulfate	HSO ₄ ⁻	thiosulfate	S ₂ O ₃ ²⁻		
hydrogen sulfide	HS⁻				
hydrogen sulfite	HSO ₃ ⁻				
hydroxide	OH⁻				
hypochlorite	CIO-				
iodide	I ⁻				
nitrate	NO ₃				
nitrite	NO ₂				
perchlorate	CIO ₄ -				
permanganate	MnO ₄ ⁻				

Space for Personal Note

Discussion

Consider the ionic compound, sodium chloride (NaCl) which is also known as table salt.

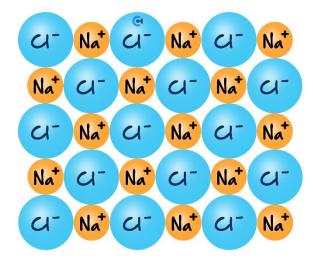

What happens if we place salt in a glass of water and mix thoroughly?

How does this happen?

Exploration: Bonding in Water

- Reconsider the structure of water (H₂O):
 - Polarity of Water: (Label Below) 💈
 - Intermolecular Bonding: (Label Below) 3

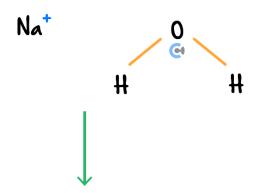
Type of Bonding in Water: ______ bonding. \$\sigma\$



Active Recall: What type of bonding exists in sodium chloride?

Exploration: Sodium chloride (NaCl) in water

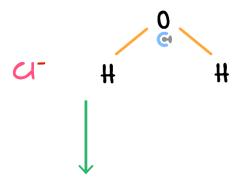
Reconsider the structure of sodium chloride (NaCl):



- ► Electrostatic Attraction: 🧵 [Full]/[Partial]
- Consider a sodium ion (Na+) next to a water molecule:
 - Attracted end of water molecule: □ [Positive]/[Negative]
 - Atom has this charge?:
 [Oxygen]/[Hydrogen]
 - Attractive force between water molecule and sodium ion? *(Label Below)* 3

Water orientation for optimal attraction: (Label Below)

Nat


- There is electrostatic attraction between the ______ positive sodium cation (Na⁺) and the ______ negative oxygen end of the water.
- Consider a water molecule close to a chloride ion (Cl⁻):

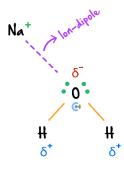
[Positive]/[Negative]

Which atom has this charge?

[Oxygen]/[Hydrogen]

- What attractive force would exist between a water molecule and a chloride ion? (Label Below)
- How might the water orient itself to optimise this attraction? (Label Below)

4


As this electrostatic attraction occurs between a **fully** charged _____ and a **partially** charged _____ bond. \$\square\$

Ion-dipole Bonding

- Definition: The electrostatic attraction formed between a fully charged [ion]/[dipole] and a [fully]/[partially] charged dipole.
- Occurrence: When ionic compounds bond with water whilst dissolving.

Try a question!

Question 1

Select the correct alternative from the following:

- **A.** Ca²⁺ would be attracted to H within a water molecule.
- **B.** Only NaCl can form ion-dipole bonds.
- C. Ion-dipole bonds can only be formed with water.
- **D.** Dissolving chemicals involves the formation of ion-dipole bonds.

Question 2

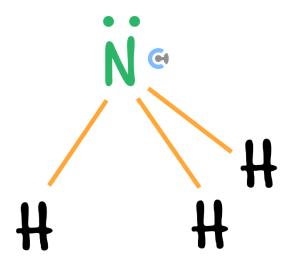
Select the false alternative from the following:

- A. Water exhibits dispersion forces.
- **B.** Water has hydrogen bonding, which can be classified as a type of dipole-dipole bonding.
- C. All ionic compounds can dissolve in water.
- **D.** Electrostatic attraction is not only between cations and anions.

Sub-Section: Strength of Bonds

Recall!

Active Recall: What is the difference between intermolecular and intramolecular bonds?



- Intermolecular bonds are bonds which occur _____ molecules.
- Intramolecular bonds are bonds which occur _____ molecules.

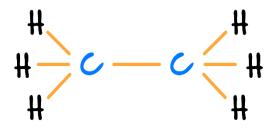
Exploration: Intermolecular Bonds vs Intramolecular Bonds

- Consider ammonia (NH₃):
 - How are the covalent bonds located? (Label Below)

The covalent bond is: \(\frac{\pi}{2}\)

[Intramolecular]/[Intermolecular]

- Consider dispersion forces for ethane (C₂H₆):
 - Location of Dispersion Forces: (Label Below)


[Within ethane]/[Between molecules]

Type of Bond: (Label Below)

[Intramolecular]/[Intermolecular]

Intermolecular vs Intramolecular Bonding

- Intermolecular bonds are bonds which occur between molecules.
- Intramolecular bonds are bonds which occur within molecules.

Try some questions!

Question	3
Question	J

Classify each of the following as either an intermolecular bond or intramolecular bond:

a. Dipole-dipole attraction:

[Intermolecular]/[Intramolecular] bond

b. Metallic bonds:

[Intermolecular]/[Intramolecular] bond

c. Ionic bonds:

[Intermolecular]/[Intramolecular] bond

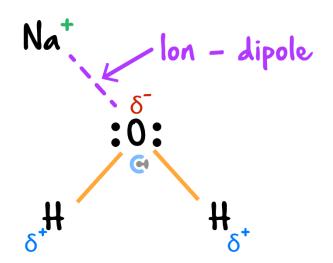
d. Hydrogen-bonds:

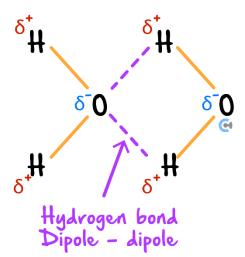
[Intermolecular]/[Intramolecular] bond

e. Ion-dipole bonds:

[Intermolecular]/[Intramolecular] bond

Question 4 Additional Question.
State what happens to the bonding in water when it boils. Reference both intermolecular and intramolecular bonds.





Let's compare the strength of all the intermolecular bonds we've learnt about!

<u>Discussion:</u> Which is stronger - ion-dipole bonds or dipole-dipole/hydrogen bonds?

Exploration: Ion-dipole vs Dipole-dipole/Hydrogen Bonds

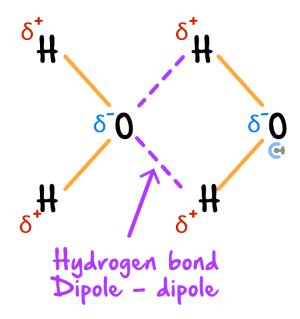
- Consider an ion-dipole bond:
 - What type of charge does an ion have?

[Full]/[Partial]

• What type of charge is present in a dipole?

[Full]/[Partial]

As such, what type of charges are involved in an ion-dipole bond? (Label Below)


- Consider a dipole-dipole/hydrogen bond:
 - What type of charge is present in a dipole?

[Full]/[Partial]

What type of charge is present in another dipole?

[Full]/[Partial]

As such, what type of charges are involved in a dipole-dipole bond? (Label Below)

- Which combination will have stronger electrostatic attraction? [Full & Partial]/[Partial & Partial]
- Which bond is stronger? \(^2\)

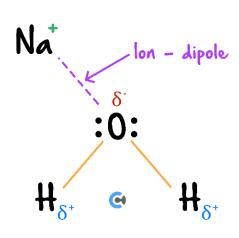
[lon-dipole]/[Dipole-dipole]

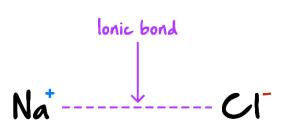
Observation #1: Dipole-dipole/hydrogen bonds occur between partial charges only.

- Observation #2: Ion-dipole bonds occur between a partial charge and a full charge, and thus have stronger electrostatic attraction.
- **Result:** As such, ion-dipole bonds are stronger.

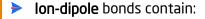
Strength of Intermolecular Bonds 2

Occurs between all molecules.	Occurs between polar molecules.	Occurs between FON and hydrogen covalently bonded to FON.	Occurs between partially charged dipoles and fully charged ions.


Strength of Bonding

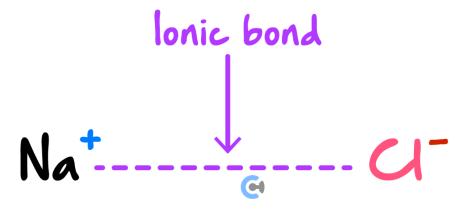

What about the intramolecular bonds?

<u>Discussion:</u> Which is stronger - ionic bonds or ion-dipole bonds?



CONTOUREDUCATION

Exploration: Ionic vs Ion-Dipole Bonding

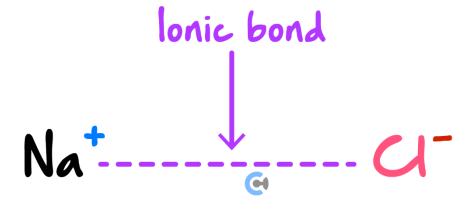

- A [partially]/fully] charged dipole.
- A [partially]/[fully] charged ion.
- Consider an ionic bond:
 - What type of charge do cations have?

[Full]/[Partial]

What type of charge do anions have?

[Full]/[Partial]

• What type of charges are involved in an ionic bond? (Label Below)


Stronger type of bonding: 3

[lonic]/[lon-dipole]

Ionic vs Ion-Dipole Bonding

Definition: As ionic bonds occur between full charges whereas ion-dipole bonds occur between partial charges, ionic bonds are stronger.

NOTE: You do NOT need to be able to compare **intramolecular** bonds' strength with one another as it is very complicated!

ALSO NOTE: Some teachers say that covalent bonds are the strongest bond of all but this is **not** necessarily correct!

Try some questions!

Question 5

State which of the following is correct regarding chemical bonds.

- **A.** Intermolecular bonds are generally stronger than intramolecular bonds.
- **B.** Ion-dipole bonding is the strongest type of intramolecular bond.
- C. Ionic bonding is generally stronger than dipole-dipole bonding.
- **D.** Bond strength is random and cannot be compared.

Sub-Section: Dissolution

Context

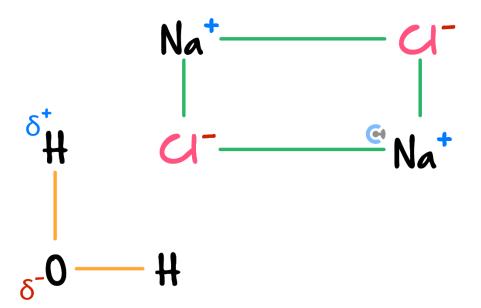
1

- We have learnt how all the **intra**molecular and **inter**molecular bonds work.
- We have compared their strengths to one another.
- But how do these ideas relate to dissolving chemicals?

Dissolution

______ is another term used to describe the process whereby a chemical dissolves.

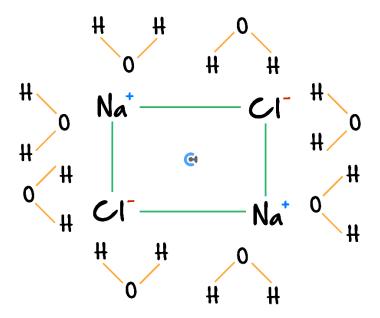
Exploration: Sodium chloride (NaCl) dissolving



Consider a scoop of table salt (NaCl) dropped into water:

ONTOUREDUCATION

What type of bond will exist between a single water molecule and a chloride ion (Cl⁻) in the ionic lattice structure? (Label Below)


Strength of Single Ion-Dipole Bond within NaCl:

[Weaker]/[Stronger]

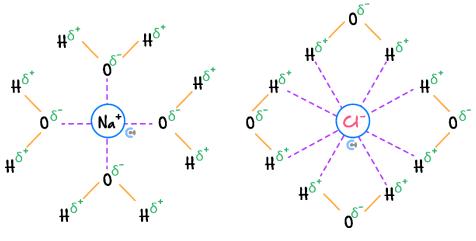
Effect of Single Water Molecule on NaCl: \$\frac{3}{2}\$

[Nothing]/[Breaks lattice]

► Effect of Multiple Water Molecules on NaCl: (Label Below)

Stronger Bonding Type:

[lonic bonding between the Na⁺ & Cl⁻ ions]/[Multiple ion-dipole bonds of the Na⁺ & Cl⁻ with water]

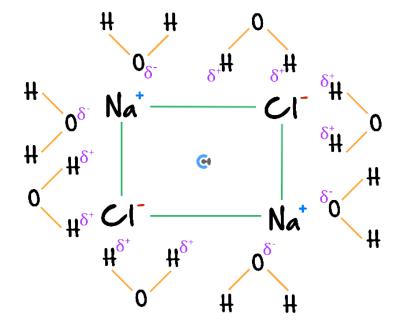


What does this look like?

Exploration: Solubility Visualised

- \blacktriangleright Watch this video of water pulling apart sodium chloride at 2x speed:
- https://www.youtube.com/watch?v=xdedxfhcpWo
- When completely submerged in water, sodium cations (Na⁺) and chloride ions (Cl⁻) will undergo the following ion-dipole bonds with water:

---- Represents ion - dipole interaction


- The reaction that the sodium chloride (NaCl) undergoes is as follows:
- Hence, sodium chloride (NaCl) is the ______ which is dissolved in the water _____.

Dissolution in Water

- Power in Numbers:
 - One single ion-dipole bond is **not stronger** than the ionic bond in the ionic lattice structure.
 - G But multiple ion-dipole bonds can ______ the ionic bonds within the ionic lattice structure. 🍣

The water molecules will slowly $___$ the sodium ions (Na⁺) and chloride ions (Cl⁻) from one another, effectively ______ the ionic lattice structure.

Solute

- Definition:
 - A _____ substance which is dissolved in the solvent.

Solvent

- Definition:
 - 😝 A _____ substance in which a solute is dissolved in. 🕏

<u>Discussion:</u> What state are the Na⁺ and Cl⁻ ions in once they've been dissolved in water?

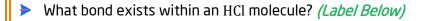
<u>Aqueous</u>

- Definition:
 - A 'state' of matter where a solute is dissolved in a water solvent.
- Denoted By:
 - (aq)
- Equation:
 - NaCl(s) $\xrightarrow{H_2O(l)}$ Na⁺(aq) + Cl⁻(aq)

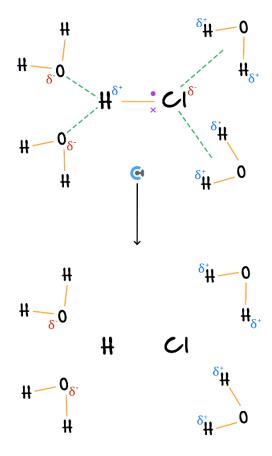
Definition

Solubility

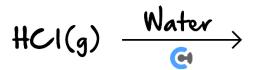
Solubility is the ability of a [solute]/[solvent] to dissolve in a [solute]/[solvent].


How do covalent molecules dissolve?

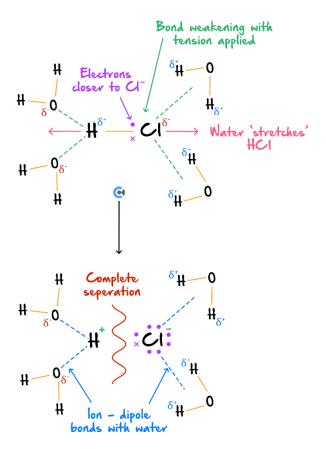
<u>Active Recall:</u> Why do some molecules share electrons rather than transferring them, when both methods can give the atoms full outer shells?



Exploration: Ionisation of Compounds in Water



- The electronegativity difference between hydrogen and chlorine is ______. 💆
- Below the _____ requirement for an ionic bond, so it is only polar. <a>\$\bar{z}\$
- When HCl is dissolved in water:
 - What do the surrounding water molecules do to HCl? (Label Below)
 - What does this tension do to the pre-existing covalent bond? (Label Below)
 - What happens to the H and the CI? (Label Below)
 - What charges do the H and Cl now each have? (Label Below)
 - What bonds are formed between the water molecules and the ions? (Label Below)


CONTOUREDUCATION

- The equation depicting the process can be written as such: (Label Below)
- What type of bonding exists before and after dissolution? (Label Below)

HCl Dissolution

This process is known as ______ as we have turned the HCl into ions. \(\bigsize{\sigma} \)

➤ The process is **also** called ______ as the HCl has been broken apart. 🥸

$$HCI(g) \xrightarrow{Water} H^{\dagger}(aq) + CI^{\dagger}(aq)$$
Covalent
$$HCI(aq) - ionic$$

NOTE: HCl(g) is a covalent molecule but HCl(aq) is an ionic compound.

ALSO NOTE: A similar process occurs with molecules such as hydrogen bromide (HBr(g) turning into HBr(aq)).

Recall!

Active Recall: What is solubility?

Let's have a look at a question together!

Question 7 Walkthrough.

Write the equation for the dissolution of a sample of solid magnesium nitrate in water.

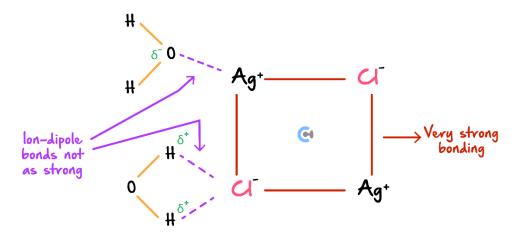
TIP: Use the databook to figure out the ionic compound's formula first!

Your Turn!

Tour ruin:	
Question 8	
Write the equation for the dissolution of each of the following compounds;	
a. Sodium sulphate in water.	
b. Ammonium chloride.	
Question 9 (2 marks)	
Explain the process by which HBr(g) dissolves in water.	
Question 10 Additional Question.	
Write the balanced chemical equation for the dissolution of calcium phosphate.	

Section B: Precipitation

Sub-Section: Solubility


Discussion: Why are some chemicals insoluble?

Exploration: Insoluble Compounds

- Consider AgCl in water:
 - What type of bonds are present? (Label Below)
 - How does the strength of each of these bonds compare? (Label Below)

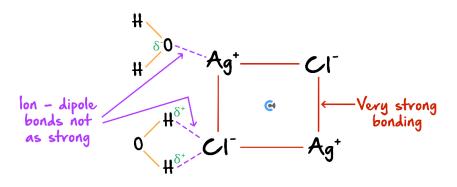
In this scenario, it happens to be that:

Ionic Bonds _____ Ion-Dipole Bonds

AgCl will: 3

[Dissociate]/[Stay Together]

NOTE: The reason why some compounds' ionic bonds are stronger than the ion-dipole bonds formed with water is **NOT** in the Study Design!



Insolubility

For insoluble compounds, the ion-dipole bonds formed with water and the ionic lattice structure are _______ to dissociate the ionic compound.

Ionic Bonds _____ *Ion – Dipole Bonds*

So then how do we know what is soluble and what is insoluble?

Databook: Solubility Tables

will generally be provided to deduce what is soluble and what is insoluble.

9. Solubility table

Salts	Soluble	Insoluble
sodium		
potassium		
ammonium	All	None
nitrate		
ethanoate		
bromide, chloride, iodide	Most are soluble.	lead(II), silver, CuBr ₂ , CuI ₂
sulfate	Most are soluble.	barium, calcium, lead(II), silver
carbonate	Group 1 ions, ammonium	Most are insoluble.
phosphate	Group 1 ions, ammonium	Most are insoluble.
hydroxide	Group 1 ions, ammonium	Most are insoluble.

What if we don't have a solubility table?

TIPS: A good acronym to remember which compounds are generally soluble is the acronym __ S – E -**NOTE:** Compounds which do not have at least one SNAPE are generally insoluble. ALSO NOTE: The reason why SNAPE works is if we look at the solubility tables, the compounds with ____ are SNAPE. 🍣

Let's look at a question together!

Question 11	Walkthr	ough.
--------------------	---------	-------

a.	State whether	reach of the	ionowing is som	ible or insoluble i	n water, witho	ut 100king at a s	solubility table:

i.	KNO_3 .	

ii.	Na ₂ SO ₄ .

i	iii.	$BaCO_3$.
b. `	Veri	ify each of your answers above by using a solubility table.

NOTE: Whilst SNAPE works, it is not 100% accurate, which is why solubility tables exist.

ALSO NOTE: The reason we are covering SNAPE is because many schools do not allow you to use a solubility table/databook during your tests and exams!

Recall!

Active Recall: What does SNAPE stand for?

- **>** S −
- ► N -
- ► A -
- ► P -
- **►** E –

Your Turn!

Question 12

a. Without referring to solubility tables, identify which of the following substances are soluble and which are insoluble:

 K_3PO_4 , $PbSO_4$, $Ca(CH_3COO)_2$, $(NH_4)_2SO_4$, AgBr, LiOH, $Ba_3(PO_4)_2$

Soluble	Insoluble

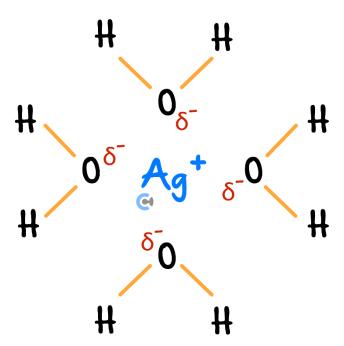
b. Verify each of your answers above using a solubility table.

Question 13 Additional Question.

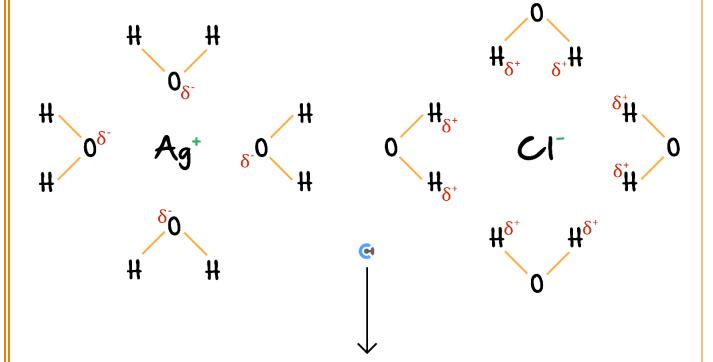
State one example of a compound which is soluble but is not found in SNAPE.

Sub-Section: Introduction to Precipitation

Let's take a look at what happens to these insoluble compounds when they interact with water!


Active Recall: What is th	e solubility of	AgCl in water?
---------------------------	-----------------	----------------

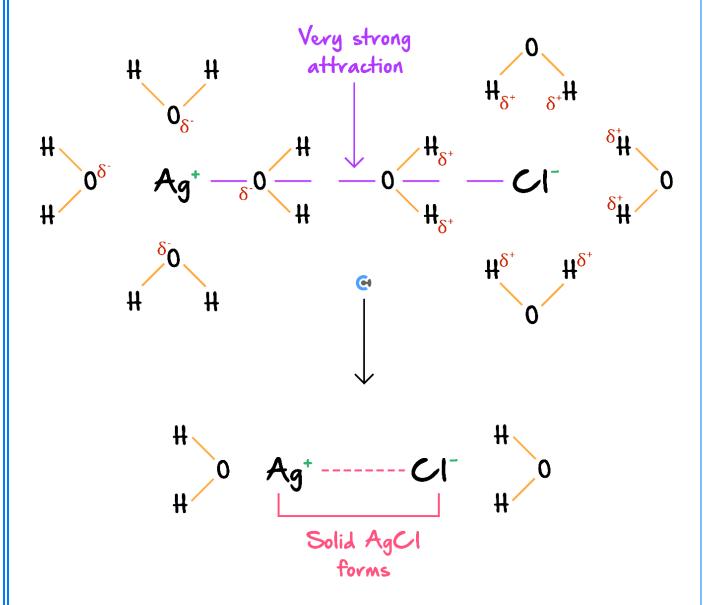
Exploration :	Insoluble	Compounds



- \blacktriangleright Are silver cations (Ag⁺) by themselves soluble? How about chloride ions (Cl⁻) by themselves? \overline{z}
- When the ions exist by themselves, they can form ______ bonds with water. (Label Below)

CONTOUREDUCATION

- Consider mixing together a solution only containing dissolved Ag⁺(aq) and another with only dissolved Cl⁻(aq):
 - How strong is the attraction between Ag⁺ and Cl⁻? (Label Below)
 - As a result, what will this look like after some time? (Label Below)
 - What will the state of AgCl be? (Label Below)


- The reaction can be written as follows:

Precipitation

- Definition:
 - The process where a ______ is formed from a solution.
 - The solid forms due to it being _____ in water.

<u>Discussion:</u> Are ions found on their own? Can we have a solution containing just $Ag^+(aq)$ and another containing just $Cl^-(aq)$, for example?

[Yes] / [No]

Exploration: Precipitation Reactions

- The following is a video showing the precipitation reaction forming silver chloride precipitate (AgCl):
 - https://www.youtube.com/watch?v=xR_VZXOz64A
- ► Ag⁺ ions and Cl⁻ are generally **not** found alone and are usually part of another **ionic** compound.
- If we consider silver nitrate (AgNO₃):
 - Is silver nitrate soluble?
- If we consider potassium chloride (KCl): 💆
 - Is potassium chloride soluble?
- What happens if we mix silver nitrate (AgNO₃) and potassium chloride (KCl) together? (Label Below)

If these two solutions are mixed together, the following equation will form: \$\sime\$

$$AgNO_3(aq) + KCl(aq) \rightarrow \underline{\hspace{1cm}}$$

Reactants could've been written as either:

$$AgNO_3(aq) + KCl(aq)$$

or

$$Ag^{+}(aq) + NO_{3}^{-}(aq) + K^{+}(aq) + Cl^{-}(aq)$$

Aqueous ions can be _____ as they are merely **floating** around in solution, and **not** strictly bound together.

The equation could be written as such:

$$AgNO_3(aq) + KCl(aq) \rightarrow AgCl(s) + KNO_3(aq)$$

or

$$Ag^{+}(aq) + NO_{3}^{-}(aq) + K^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s) + K^{+}(aq) + NO_{3}^{-}(aq)$$

- Is there anything which can be 'cancelled out' on either side of the equation? (Label Above)
- As these ions are not participating in the overall reaction, we call them ______.
- > The equation can be simplified as such: \$\sime\$

NOTE: An easy way to identify spectator ions is by searching for species which are _______before and after the reaction.

Precipitation Reactions

- As ions are not found alone, solutions **of ionic compounds** are generally mixed together.
- If one of the products is insoluble, a ______ is formed. \(\begin{align*}
 \begin{align*}
 \beg
- Aqueous ions can be _____ as they are merely floating around in solution, and not strictly bound together. \$\bar{\sigma}\$

$$AgNO_3(aq) + KCl(aq) \rightarrow AgCl(s) + KNO_3(aq)$$

NOTE: As the AgCl(s) forms an ionic lattice structure and is not dissolved in the solution, it cannot be written as $Ag^+(s) + Cl^-(s)$ as it is one compound.

Net Ionic Equation

If we now consider the two 'forms' of the same reaction we've seen:

$$AgNO_3(aq) + KCl(aq) \rightarrow AgCl(s) + KNO_3(aq)$$

or

$$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$$

- The top equation is called the ______ equation and the bottom equation is called the _____ equation. 👺
- A (net) ionic equation omits ______ so as to only show the species which are reacting. 🏖
- Spectator ions are ions which are present before and after the reaction but _____ in any reaction themselves. 💆
- The full equation details _____ which is present before and after the reaction is completed. 🍣

Let's look at some questions together!

Question 14 Walkthrough.

Write the ionic equation from the full equation provided by identifying any spectator ions:

$$2NaBr(aq) \, + \, PbCl_2(aq) \, \rightarrow \, PbBr_2(s) \, + \, 2NaCl(aq)$$

- a. Spectator ions
- **b.** Ionic equation

REMINDER: Don't forget spectator ions are the ions which remain aqueous before and after the reaction.

Your turn!

Question 15

Write the ionic equation from the full equation provided and identify any spectator ions:

- **a.** $HCl(aq) + KOH(aq) \rightarrow KCl(aq) + H_2O(l)$
 - i. Spectator ions
 - ii. Net ionic equation
- **b.** $2HCl(aq) + MgO(s) \rightarrow MgCl_2(aq) + H_2O(l)$
 - i. Spectator ions
 - ii. Net ionic equation

Question 16 Additional Question.

Write the ionic equation from the full equation provided and identify any spectator ions:

$$KNO_3(aq) + NaCl(aq) \rightarrow KCl(aq) + NaNO_3(aq)$$

- a. Spectator ions
- b. Net ionic equation

NOTE: In equations such as the following:

$$KNO_3(aq) + NaCl(aq) \rightarrow KCl(aq) + NaNO_3(aq)$$

There's no real reaction occurring - there are two solutions mixing together, and they still all remain dissolved in the solution.

Sub-Section: Writing Full Precipitation Reactions

What if the full equation has not already been given?

Question	17	Walkthrou	ւջի.
Vaccioni	_ ,	1 1 WHILL OU	****

For each of the following:

- i. Write the overall equation.
- ii. List any precipitate formed.
- iii. List any spectator ions.
- iv. Write the corresponding net ionic equation.
- **a.** A solution of lead (II) nitrate and sodium bromide are mixed together.

Overall equation:	
Precipitate formed:	
Spectator ions:	
Not ionic equation:	

b. A solution of ammonium chloride and potassium ethanoate are mixed together.

Overall equation:

Precipitate formed:

Spectator ions:

Net ionic equation:

NOTE: Precipitation reactions are also known as double displacement reactions as in each ionic compound, one of the ions is being 'displaced' with another ion.

Question 18			
Wr	ite the:		
a.	Full equation for when aluminium nitrate $(Al(NO_3)_3)$ is mixed with sodium sulphide (Na_2S) .		
b.	The corresponding net ionic equation.		
Qu	estion 19		
	each of the following, determine whether a precipitation reaction will form, and if so, write the ionic equation the precipitation reaction.		
a.	KOH mixed with AlCl ₃ .		
b.	Pb(CH ₃ COO) ₂ added to NaNO ₃ .		

c. $NH_4OH + Na_2SO_4$.

Question 20 Additional Question.

State the identity of the precipitate when each of the following solutions is mixed together.

a. $K_3PO_4 + MgSO_4$.

b. $Ba(NO_3)_2 + (NH_4)_2SO_4$.

Contour Checklist

Learning Objective: [1.9.1] Explain the process by which ionic compounds dissolve in water with reference to ion-dipole bonding

Study Design

The use of solubility tables to predict and identify precipitation reactions between ions in solution, represented by balanced full and ionic equations including the state symbols: (s), (l), (aq) and (g)

Key Takeaways

Occurs between molecules.	Occurs between molecules.	Occurs between FON and ————— covalently bonded to ——— ·	Electrostatic attraction between a fully charged [ion] / [dipole] and a [fully] / [partially] charged dipole .

Ionic bonds occur between [full] / [partial] charges whereas ion-dipole bonds include partial charges, so [ionic] / [ion-dipole] bonds are stronger.
is used to describe the process by which ionic compound dissolves
A is a solid substance which is dissolved in the solvent.
A is the liquid in which the solute is dissolved
Solubility is the ability of a [solute] / [solvent] to dissolve in a [solute] / [solvent]
For insoluble compounds, the ion-dipole bonds formed are [strong enough] / [not strong enough] to dissociate the ionic compound:

Ionic Bonds _____ Ion-Dipole Bonds

Learning Objective: [1.9.2] Write balanced equations for ionic compounds dissociating/ionising in water
Study Design
The use of solubility tables to predict and identify precipitation reactions between ions in solution, epresented by balanced full and ionic equations including the state symbols: (s) , (l) , (aq) and (g)
Key Takeaways
While one single ion-dipole bond is not stronger than the ionic bond in the ionic lattice structure, multiple ion-dipole bonds can the strong ionic bonds within the ionic lattice structure.
When table salt dissolves: water molecules slowly pull apart the Na^+ and Cl^- ions from one another, effectively the ionic lattice structure.
When ionic compounds dissolve, it is also known as, as the compound is split into ions.

☐ The process is also called ______ as the compound has been broken apart.

is generally written above the arrow in a dissolution equation

Learning Objective: [1.9.3] Identify which compounds will or will not dissolve in water, with reference to SNAPE and/or solubility tables			
Study Design			
The use of solubility tables to predict and identify precipitation reactions between ions in solution, represented by balanced full and ionic equations including the state symbols: (s) , (l) , (aq) and (g)			
Key Takeaways			
A will generally be provided to deduce what is soluble and what is insoluble.			
☐ To determine what is soluble in water, we can also use the acronym SNAPE <i>(Label Below):</i>			
O S-			
O N -			
O A-			
O P-			

O E-

<u>Learning Objective</u> : [1.9.4] Write full & ionic equations for p	recipitation
reactions	

Study Design

The use of solubility tables to predict and identify precipitation reactions between ions in solution, represented by balanced full and ionic equations including the state symbols: (s), (l), (aq) and (g)

Key Takeaways		
	is the process where a solid is formed from a solution.	
	The solid forms due to it being [soluble] / [insoluble] in water	
	Aqueous ions can be as they are merely floating around in solution, and not strictly bound together	
	A (net) ionic equation omits so as to only show the species which are reacting	
	Spectator ions are ions which are present before and after the reaction but in any reaction themselves.	
	The equation details everything which is present before and after the reaction is	

completed.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Chemistry ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

<u>1-on-1 Video Consults</u>	<u>Text-Based Support</u>
 Book via bit.ly/contour-chemistry-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 137 304</u> with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

