

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Chemistry ½
Covalent Molecules [1.6]
Test

20 Marks. 1 Minute Reading. 16 Minutes Writing

Results:

Test Questions	/15
Extension	/5

Section A: Test Questions (15 Marks)

Ou	estion	1	(3	marks))

Tick whether the following statements are true or false:

		True	False
a.	A Lewis structure for nitrogen molecule (N_2) consists of a triple bond between the nitrogen atoms.		
b.	In a Lewis structure, the dots represent the nucleus of the atoms.		
c.	Carbon dioxide (CO ₂) has a linear molecular shape according to VSEPR theory.		
d.	Water (H ₂ O) has a tetrahedral molecular shape due to the arrangement of electron pairs around the oxygen atom.		
e.	In methane (CH ₄), the central carbon atom forms single bonds with four hydrogen atoms resulting in a tetrahedral molecular and parent geometry.		
f.	In hydrogen chloride (HCl), the chlorine atom shares one pair of electrons with hydrogen, resulting in a linear molecular shape.		

Space for	Personal	Notes
-----------	----------	-------

Qu	Question 2 (6 marks)			
Kh	adija is investigating a simple yet intricate molecule - oxygen gas.			
a.	a. State what is meant by the term 'diatomic molecule'. (1 mark)			
b.	Draw the Lewis dot structure of oxygen gas. (2 marks)			
c.	Hence or otherwise, explain why oxygen exists diatomically in nature. (1 mark)			
d.	d. Complete the table below regarding the 3-dimensional shape of oxygen. (2 marks)			
	Molecular geometry of O ₂ Electron geometry for each O atom			

Space for Personal Notes

	a is researching the Haber process, wherein ammonia, NH ₃ , is evolved.
	Justify why nitrogen can form 3 covalent bonds. (1 mark)
	Hence or otherwise, draw the Lewis structure of ammonia. You may use lines to depict covalent bonds. (2 marks)
	State the molecular geometry of ammonia, and justify why it is as such, with reference to an appropriate theory. (3 marks)
•	

Section B: Extension (5 Marks)

Question 4 (5 marks)			
Jake is investigating some compounds and their 3-dimensional shapes.			
For parts a. and b. :			
i. State the molecular geometry. (1 mark)			
ii. State the parent geometry of the central atom. (1 mark)			
a. Hydrogen cyanide (HCN). (2 marks)			
- -			
b. Nitrosyl chloride (NOCl). (2 marks)			
c. Draw the structure of boron trifluoride (BF ₃). (1 mark)			
3, (a,)			

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Chemistry ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	Text-Based Support
 Book via bit.ly/contour-chemistry-consult- 2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 137 304 with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

