

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Chemistry ½
Metal Reactions & Recycling [1.4]

Workbook

Outline:

- Introduction to Metal Reactions
- Reactivity of Metals
- Other Metals
- Metal Reactions with Water

Production & Recycling Metals

Extraction of Metals

Metal Recycling

Pg 24-34

Learning Objectives:

- CH34 [1.4.1] Write balanced equations for the reactions between a metal and oxygen and between a metal and water, and explain any relevant implications of these reactions.
- CH34 [1.4.2] Apply trends in the periodic table to metal reactivity.
- CH34 [1.4.3] Explain how metals are obtained and recycled, and their associated advantages and disadvantages.

Section A: Reactivity of Metals

Sub-Section: Introduction to Metal Reactions

<u>Discussion:</u> What substances do metals typically react with?

Let's explore this further!

Exploration: Reactions with Metals

Consider Lithium:

Li

- What is the electronic configuration of lithium?
- According to the Octet Rule, what will this lithium (Li) atom try to do?
- Cithium can also lose its electron by ______ with another substance.
- Hence, lithium will be [reactive] / [unreactive].

As lithium is highly reactive, it reacts as follows when in contact with oxygen gas (0_2) in air:

$$4\text{Li}(s) + O_2(g) \rightarrow 2\text{Li}_2O(s)$$

- What do we call the number in front of each chemical? (Label Above)
- What do we call the small numbers at the bottom of each chemical? (Label Above)
- What do the letters in the brackets represent? (Label Above)
- What are the species on either side of the arrow called? (Label Above)

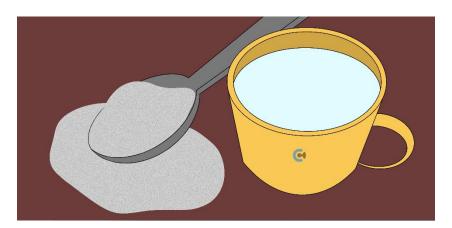
NOTE: This is known as a redox reaction - we'll cover this later in the year.

Chemical Equations

- Definition:
 - Chemical equations are used to describe what chemical reactions occur in the form of an equation.

<u>Feature Name</u>	<u>Feature Definition</u>
Subscript	Tells how many of each atom are present in chemical equation.
Coefficient	Represents how many of the entire compound/element is present.
Reactants	Substances on the left side of the equation.
Products	Substances on the right side of the equation.
States	Letter in brackets that tells state of matter of compound.

CONTOUREDUCATION


- Four states are seen in chemical equations:
 - **(**s)-_____
 - **(**I)-_____
 - **6** (g)-_____
 - (aq)-____

Discussion: What does it mean to be in an aqueous (aq) state?

<u>Discussion:</u> What are some examples of substances that are in an aqueous state?

NOTE: We'll have a look at solubility later on in the year!

Let's have a look at a specific metal reaction!

Exploration: Metal & Oxygen Reaction

$$4\text{Li}(s) + 0_2(g) \rightarrow 2\text{Li}_20(s)$$

Lithium metal reacts with oxygen in the air to form ______

Metal & Oxygen Reaction

- Metal (s) + Oxygen (g) → Metal Oxide (s)
- For example:

$$4\text{Li}(s) + 0_2(g) \rightarrow 2\text{Li}_20(s)$$

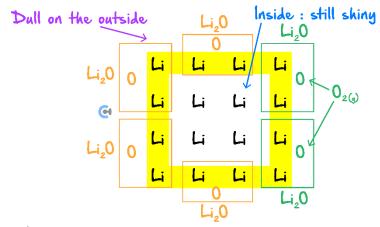
What do lithium (Li) and lithium oxide (Li $_2$ 0) look like?

Exploration: Metal and Metal Oxide Appearance

Lithium

Lithium Oxide

- What appearance does lithium have? [Shiny] / [Dull]
- What appearance does lithium oxide have? [Shiny] / [Dull]


Consider the metallic bonding of lithium in this reaction:

- Oxygen contacts a block of lithium on the [inside] / [outside].
- What will this oxidised lithium turn into?
- Therefore, the exterior will look [shiny] / [dull].
- On the inside, the lithium metal [will] / [will not] be exposed to oxygen?
- As such, it ______ as lithium metal (Li) on the inside.
- Therefore, the interior will look [shiny] / [dull].

Metal and Metal Oxide Appearance

Lithium metal turns into lithium oxide on the outside

When a metal is exposed to oxygen:

Outside the metal	Inside the metal
Physically exposed to oxygen and turns into metal oxide which is dull.	No contact with oxygen and remains as the pure metal which is lustrous.

<u>Discussion:</u> What happens if we cut lithium metal (covered in lithium oxide on the outside) to expose the lithium metal on the inside?

Let's have a look at this!

Exploration: Cutting a Metal

- Watch: https://www.youtube.com/watch?v=uixxJtJPVXk just for the first 30 seconds (ignore the rest of the video for now).
 - By slicing the lithium metal, the inside is now visible, showing its [lustrous] / [dull] form.
 - Therefore, the inside must be [lithium] / [lithium oxide].
 - However, in air, this lithium metal is now exposed to ______, causing it to form _____
 - Subsequently, the metal becomes [shiny] / [dull].

Cutting a Metal

When sliced, the pure metal on the inside is shiny. However, as it is now exposed to oxygen, the metal turns into its oxide form, in turn becoming dull.

Let's have a look at writing an equation together!

Question 1	Walkthrough.
-------------------	--------------

Write the reaction which occurs between aluminium metal and oxygen in the air.

NOTE: First find the charge of aluminium metal and oxygen when they form ions, and write the product that will form.

REMINDER: Be sure to balance every single element and include states!

Your turn!

Question 2		
Write the reaction that occurs when the following metals are exposed to oxygen in the air.		
a.	Magnesium metal.	
b.	Potassium metal.	
c.	Gallium metal.	
Question 3 Additional.		
Wr	ite the balanced equation for barium reacting with oxygen, and state the name of the product formed.	

NOTE: You are allowed to use fractions as coefficients when balancing chemical equations!

Sub-Section: Reactivity of Metals

Context

- Lithium quickly reacts with oxygen in the air to form lithium oxide, a trend seen for all group 1 metals.
- As such, it is important to consider the **reactivity** of metals.

Active Recall: What does a metal do when it reacts?

<u>Discussion:</u> What concept/trend affects how easily metals will lose their electrons and thus how easily metals can react?

Metal Reactivity

- Definition:
 - How reactive metals are depends on how easily they can lose their electrons, hence it depends on the **first ionisation energy/metallic character**.

Exploration: Metal Reactivity

- Which metal has the lowest first ionisation energy?
- This is equivalent to saying francium has the [greatest] / [least] metallic character.
- As such, what is francium's reactivity? [Highest] / [Lowest]

Extension:

While francium (Fr) is theoretically the most reactive metal, reaction with francium has never taken place as it is very unstable with the longest half-life of 22 minutes and thus readily decays into another atom.

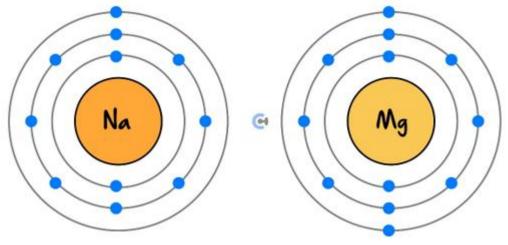
NOTE: Even if a reaction were to occur with francium, it would be so explosive that it would be too dangerous. Here's a funny video (**don't take this seriously**) showing what a reaction of francium with water could look like:

https://www.youtube.com/watch?v=UEasDa0Fsd0&ab_channel=FrankOloffsen

Let's have a look at how metal reactivity can vary!

Exploration: Trends with Reactivity

- Down a group, atomic radii [increases] / [decreases] / [stays the same].
- Thus, first ionisation energy down a group [increases] / [decreases] / [stays the same].
- Hence, metal reactivity down a group [increases] / [decreases] / [stays the same].
- Group 1 Metals:


Group 1A	<u>Configuration</u>	<u>Condensed</u> <u>Configuration</u>
Li	$1s^22s^1$	[He]2s ¹
Na	$1\mathrm{s}^22\mathrm{s}^22\mathrm{p}^63\mathrm{s}^1$	[Ne]3s ¹
К	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹	[Ar]4s ¹
Rb	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ 5s ¹	[Kr]5s ¹
Cs	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ 5s ² 4d ¹⁰ 5p ⁶ 6s ¹	[Xe]6s¹
Fr	$1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^24f^{14}5d^{10}6p^67s^1$	[Rn]7s ¹

CONTOUREDUCATION

What is the most and least reactive group 1 metal?

Most Reactive	<u>Least Reactive</u>

If we look at two metals in the **same period** such as sodium (Na) and magnesium (Mg):

- [Na] / [Mg] will have a greater core charge.
- Hence, [Na] / [Mg] will have a higher first ionisation energy.
- Therefore, [Na] /[Mg] is more reactive.
- As such, as we go across (left to right) a period, metal reactivity: [Increases] / [Decreases].

Metal Reactivity Trends

Potassium, K	1
Sodium, Na	
Calcium, Ca	
Magnesium, Mg	
Aluminium, Al	
Zing Zn	Increasing
Iron, Fe	reactivity
Nickel, Ni	
Lead, Pb	
Copper, Cu	
Silver, Ag	
Gold, Au	
Platinum, Pt	

- Metal reactivity increases down a group, as first ionisation energy decreases.
- Metal reactivity **decreases** across a period, as first ionisation energy **increases**.

Let's have a look at a question together!

Question 4 (3 marks) Walkthrough.	
Explain whether rubidium (Rb) or calcium (Ca) will be more reactive.	
NOTE : In general, group 1 metals are the most reactive metals.	
Your turn!	
Question 5 (4 marks)	
State and explain which of the following metals are more reactive:	
a. Potassium (K) or Caesium (Cs). (2 marks)	

VCE Chemistry ½ Questions? Message +61 440 137 304

b. (Calcium (Ca) or Gallium (Ga). (2 marks)
- - 	
- 	
Que	stion 6 (3 marks) Additional.
Expl	lain why francium is the most reactive metal in theory.
- I	
- I -	
-	
l	
Spa	ce for Personal Notes

Sub-Section: Other Metals

Let's have a look at some other metals now!

Exploration: 'Expensive' Metals

- What are some expensive metals that exist?
 - Why are they expensive (apart from the fact that they are rare)?
 - As such, what form are they typically found in? [Metal] / [Metal Oxide]
 - Hence, what is their appearance even after years of exposure? [Shiny] / [Dull]

'Expensive' Metals

- Expensive metals such as gold (Au), platinum (Pt), and silver (Ag) are all fairly unreactive and exist in their metallic form rather than as a metal oxide.
- They remain lustrous/shiny rather than having a dull appearance like lithium (Li) would normally.

Try a question!

Question 7

Select the correct sentence to explain why sodium metal is never found in minerals on Earth as the pure element, but gold is found as the pure metal.

- **A.** Sodium is too reactive with oxygen and water, whereas gold reacts with neither.
- **B.** Sodium is too unreactive and will not form on Earth.
- C. Sodium reacts only with water, whereas gold reacts with water and oxygen.
- **D.** Sodium reacts with water and oxygen, whereas gold reacts only with oxygen.

Question 8 (2 marks) Additional.		
Explain why silver chains are shiny even after being worn for long period of time.		

Discussion: How are reactive metals typically stored?

<u>Discussion:</u> Why is argon gas used to prevent these metals from reacting with oxygen in the air?

Storing Metals

- **Definition:**
 - To prevent reactive metals from reacting with oxygen in the air, they are stored in ______
- This acts as a ______ between the metal and oxygen.
- Argon is used as it is a noble gas, making it ______, and it is cheap and readily available.

Try some more questions!

Question 9 (2 marks)	
tate a method in which to prevent caesium metal from spontaneously reacting with oxygen in the air. Justinswer.	stify your

Question 10 (3 marks) Additional.			
Explain which metal is most likely to react out of sodium (Na), potassium (K), and calcium (Ca).			

Sub-Section: Metal Reactions with Water

Let's have a look at another type of reaction metals can undergo!

Exploration: Metal Reactions with Water

 \blacktriangleright Aside from reacting with oxygen in the air, these metals can also react with water (H_2O).

$$Na(s) + H_2O(l) \rightarrow$$

- The anion that will form with the sodium is:
- After adding in the salt, what is in surplus?
- \blacktriangleright Sodium reacts with water to form sodium hydroxide (NaOH) and hydrogen gas (H₂).

Definition

Metal Reactions with Water

Metals react with water to form a hydroxide salt and hydrogen gas.

$$Na(s) + H_2O(l) \rightarrow$$

NOTE: We'll cover the balancing of these equations and metal ionic compounds after we look at ionic compounds in depth.

ALSO NOTE: Here is a video of group 1 metals reacting with water (and oxygen):

https://www.youtube.com/watch?v=uixx[t]PVXk

Exploration: Metal Reaction with Water Observations

- When metals react with water, an _____ occurs.
 - Why do we observe this? (Hint: Look at the products)
 - Hydrogen gas is formed, which is ______ as it reacts with oxygen in the air to burn as such:

$$2H_2(g)+O_2(g)\rightarrow 2H_2O(g)$$

Here's a video of hydrogen gas exploding in the air:

https://www.youtube.com/watch?v=nLuOM9aOWvk&ab_channel=TheRoyalInstitution

Metal Reaction with Water Observations

- When metals react with water, hydrogen gas is produced.
- This often causes an **explosion**, as hydrogen is very flammable.

Let's look at a question together!

^	11	XX7 11	41	
Ouestion	11	walk	Inroi	ıgn.

Write the equation for the reaction between magnesium and water.

NOTE: Be sure to check the charge of the metal and figure out how many hydroxides (OH⁻) for it to be balanced.

Your turn!

Qu	estion 12
Wri	ite the equation for the reaction between potassium and water.
Que	estion 13
	ite the equation for the reactions that occur when the following metals are dipped into a tub of water.
a.	Barium
b.	Aluminium

Question 14 Additional.

Which one of the following metals is most likely to react with cold water to form hydrogen gas?

- A. Lead
- B. Sodium
- C. Silver
- **D.** Copper

Key Takeaways

- Metals lose electrons when reacting to gain a full outer shell.
- \checkmark General formula for metal-air reaction: Metal (s) + Oxygen (g) \rightarrow Metal Oxide (s).
- ✓ Outside of a metal turns into dull metal oxide.
- ☑ Inside has no contact with oxygen, and so remains as the pure, lustrous metal.
- When sliced, the metal on the inside is shiny. However, it is now exposed to oxygen so will convert to an oxide form and become dull.
- Metal reactivity is directly correlated with metallic character and first ionisation energy.
- Metal reactivity increases down a group but decreases across a period.
- Expensive metals are all fairly unreactive and thus exist in their usual metallic form, remaining shiny.
- To prevent reactive metals from reacting with oxygen in the air, they are usually stored in oil or argon gas.
- The general formula for metals reacting in water is: Metal (s) + Water (l) → Hydroxide Salt (aq) + Hydrogen (g).
- ☑ This produces hydrogen gas, which is flammable, and hence can cause an explosion.

Section B: Production & Recycling Metals

Sub-Section: Extraction of Metals

Discussion: Where are metals found?

Context

Metals are inseparable from human development, and thus need to be obtained and produced.

Analogy: Minecraft

When playing Minecraft, what form is metal found in?

What do you have to do with that ore before it can be turned into 'proper' metal?

What form do metals typically exist, in real life?

Exploration: Natural Form of Sodium

<u>Form</u>	<u>Na</u>	<u>Na</u> +
Electron Configuration	2,8,1	2,8
Stable/Unstable		

Sodium will more likely exist in its [ion] / [metal] form when mined from the ground.

Metal Extraction

- Metals are typically found in their stable, ion form.
- After the metal ore is extracted, the pure metal is obtained by heating it at high temperatures with carbon, which is a process called ________.

NOTE: The metals can also be obtained from the ores via **electrolysis** in molten conditions (we'll cover this process in VCE Chemistry ³/₄).

<u>Discussion:</u> What are some environmental issues with the production of metals from this method?

Disadvantages of Obtaining Metals

- Mining process uses land that needs to be cleared by deforestation which can lead to
- The smelting and electrolysis processes to extract pure metal from the ground uses
 - **6** 8% of the total global energy supply is used to produce and manufacture metals.
 - This use of energy is provided by **fossil fuels**, leading to more ______emissions.

Try some questions!

Question 15

Select the main reason why iron does not exist as a pure element in nature.

- **A.** Iron is too rare in the Earth's crust to exist as a pure element.
- **B.** Iron cannot exist as a pure metal.
- C. Iron reacts with water and oxygen.
- **D.** Iron is relatively unreactive.

Question 16 Additional.

Select the most correct alternative regarding metal extraction.

- **A.** Metals are typically found in their pure form in the ground.
- **B.** The land cleared to mine for metals is typically designed to be destroyed.
- **C.** Lots of energy and resources are used to mine and purify metals.
- **D.** Fossil fuels are released by metals.

Sub-Section: Metal Recycling

How can these disadvantages be offset?

Context

- 3
- Due to the environmental consequences of metal production, metal recycling is very important to achieve sustainable economic growth. Moreover,
 - resources are becoming scarcer,
 - prices of raw materials are increasing,
 - and the demand for manufactured goods is increasing.
- As such, metal recycling is very important.

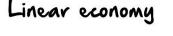
Exploration: Linear v/s Circular Economy

In the past, a _____economy occurred, when metals were produced and then _____

LINEAR ECONOMY

Materials in a Linear Economy create waste after use

Now, a ______economy is being adopted, where metals are recycled and ______ in production.


Circular economy

Materials in a Circular Economy are collected and reused after each use.

Economy Types

Circular economy

<u>Discussion:</u> How much less energy does recycling metals require than producing raw metals from the Earth's crust?

Extension: The energy savings reported for metal recycling are:

- Aluminium (Al) 95%
- Copper (Cu) 84%
- > Zinc (Zn) 75%
- Lead (Pb) 65%
- Steel (Fe & C alloy) 60%

Metal Recycling & Energy Saving

- The more reactive a metal, the _____ energy it requires to extract the metal and store it safely.
- As such, more energy is _____ when recycling these metals.

<u>Discussion:</u> Why aren't group 1 or 2 metals generally used in the industry?

Is recycling actually being used in society?

<u>Discussion:</u> Of all the gold that has ever been mined from the Earth's crust, how much of it has been recycled?

NOTE: There are large systems in place to recycle metals!

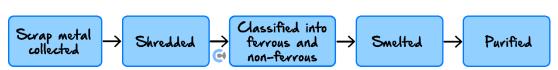
Active Recall: Describe and explain the differences between a linear and circular econom	y.
--	----

1
1

How are metals actually recycled?

Exploration: The Recycling Process

- The recycling process, or the ______ production of metals, is sourced primarily from _____, which is just waste metal.
- Watch the following videos in the playlist:


https://youtube.com/playlist?list=PL2hVhOVQpiYRo2bMz66X6Xtr5V_kW_30f&si=RtuVjkRTYSLeTVM8

- There are a couple of steps involved in the recycling process:
 - Video 1: The scrap metal is ______ and _____.

CONTOUREDUCATION

- Video 2: Scrap metal is classified into ferrous (containing iron) and non-ferrous, separated by

The Recycling Process

Let's have a look at an interesting application of this!

Exploration: E-waste

E-waste is electronic waste, which primarily stems from the discarding of mobile phones.

- Mobile phones contain small amounts of valuable gold and palladium.
- Before the Tokyo Olympic Games, Japan collected unwanted electronic devices to produce some of the Olympic Medals!

E-waste

- Electronic waste involves the discarded electronic devices containing trace amounts of valuable metals.
- Oftentimes extracting these metals is not energetically and financially viable.

Try some questions!

Question 17

Which one of the following describes a linear economy?

- **A.** An approach to using resources that end in waste.
- **B.** A production system that aims to use materials sustainably.
- **C.** A model of production and consumption with the objective of using existing materials as long as possible.
- **D.** A framework for resource use that takes environmental challenges into consideration.

Question 18

Indicate whether the following statements about metal recycling are True or False.

	True	False
By mass, the metal used most in manufacturing worldwide is aluminium.		
In general, the more reactive a metal is, the more energy it requires to extract that metal.		
The rate of recycling of lithium-ion batteries is able to keep pace with new demand for these products in electric cars.		

Question	10
Onestion	17

Indicate whether the following statements about metal recycling are True or False.

	True	False
Recycling of metals is also known as secondary production.		
Scrap metal is sorted magnetically and classified as ferrous or nonferrous.		

<u>Discussion:</u> What is the most used metal in the industry?

Try another question!

Question 20	(2 marks)
-------------	-----------

Not all metals are recycled in industry. For example, a lot of phones are disposed of rather than being recycled for their precious metals. Suggest a possible reason for this phenomenon.

Contour Check

<u>Learning Objective</u>: : [1.4.1] - Write balanced equations for the reactions between a metal and oxygen and between a metal and water, and explain any relevant implications of these reactions

Study Design

Experimental determination of a reactivity series of metals based on their relative ability to undergo oxidation with water, acids and oxygen.

Key Takeaways

gg
Metals [gain] / [lose] electrons when reacting to gain a full outer shell.
The general formula for metals reacting in the air is: Metal (s) +
Outside of a metal turns into metal oxide, which is [shiny] / [dull].
Inside [has] / [has no] contact with oxygen, and so remains as the pure, lustrous metal.
When sliced, the metal on the inside is [shiny] / [dull] , as it is now exposed to oxygen, it converts to form and becomes dull.
The general formula for metals reacting in water is: Metal (s) $+$ Water (l) \rightarrow
This produces hydrogen gas, which is and hence can cause an explosion.

<u>Learning Objective</u>: [1.4.2] - Apply trends in the periodic table to metal reactivity

Study Design

Experimental determination of a reactivity series of metals based on their relative ability to undergo oxidation with water, acids, and oxygen.

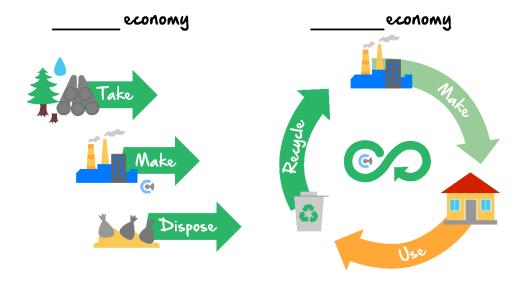
Key Takeaways

Metal reactivity is directly correlated with metallic character and	
Metal reactivity [increases] / [decreases] down a group, but [increases] / [decreases] across a period.	
Expensive metals are [reactive] / [unreactive] and exist in the usual shiny metallic form.	
To prevent reactive metals from reacting with oxygen in the air, they are usually stored in	

<u>Learning Objective</u>: [1.4.3] - Explain how metals are obtained and recycled, and their associated advantages and disadvantages

Study Design

Metal recycling is an example of a circular economy where metal is mined, refined, made into a product, used, disposed of via recycling and then reprocessed as the same original product or repurposed as a new product.


Key Takeaways

Metals are typically found in their stable, [atomic] / [ionic] form.
After metal ore is extracted, the pure metal is obtained by heating at high temperatures with carbon, which is a process called
Mining process uses land that needs to be cleared by deforestation which can lead to

The smelting and electrolysis processes to extract the pure metal from the ground uses large
amounts of

- This use of energy is typically provided by [renewable] / [fossil] fuels which leads to more ______ emissions.
- ☐ Label the 2 types of economies below:

- ☐ The more reactive a metal, the **[more] / [less]** energy it requires to extract the metal and store it safely.
- ☐ Group 1 and Group 2 metals generally [are] / [are not] used to construct things, as they are too reactive and dangerous, thus are generally not recycled due to low use.
- ☐ Metal recycling uses _____ metal, which is first collected and _____.
- □ It is then classified into _____ and non-____ groups, before being _____, and finally, _____.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Chemistry ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit:ly/contour-chemistry-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 137 304 with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

