0478 066 933

CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Chemistry ½ Trends in the Periodic Table [1.2]

Workbook

Outline:

The Periodic Table

Pg 3-15

- Electron Configurations using the Periodic Table
- Valence Electrons in the Periodic Table

Ionisation Energy & Effective

Nuclear Charge

Pg 16-34

- First Ionisation Energy Across a Period
- Effective Nuclear Charge or Core Charge
- First Ionisation Energy Along a Group
- Metallic Character

Electronegativity and Atomic Radius

Pg 35-42

Non-Metallic Character

Learning Objectives:

- CH12 [1.2.1] Explain why the periodic table is arranged the way it is, with respect to blocks, periods and groups.
- G
- CH12 [1.2.2] Explain what the terms 'electronegativity, 'atomic radius', 'first ionisation energy', 'metallic character' and 'non-metallic character' mean, and explain how they vary across a period and down a group.
- CH12 [1.2.3] Find the effective nuclear/core charge of an element, explain how it varies across a period and down a group, and apply it to other trends observed in the periodic table.

Section A: The Periodic Table

Context

- Dimitri Mendeleev is known as the founding father of the periodic table, proposing its prototype back in 1869!
- This is what it looks like today!

Periodic table of the elements

1 # 1.0 Hydrogen																	2 He 4.0 Helium
3 1	4 Be						Atomic Relative atom		74 An Synl 17.0	rol of element		5 B 10.8	6 0	7 N 14.0	8 0 16.0	9 F 19.0	10 Ne
6.9 Lithiam	9.0 Beryllium						realite killing			of element		Boron	Curbon	Nitrogen	Охудел	Fluorine	20.2 Neon
11 Na 23.0 Sodium	12 Mg 24.3 Magaesium											13 Al 27.0 Alaminiam	14 Si 28.1 Silicon	15 P 31.0 Phosphorus	16 S 32.1 Sulfur	17 Cl 35.5 Chlorine	18 Ar 34.4 Argon
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.1 Potassina	40.1 Colciem	5.0 Scandian	Ti 47.9 Titaniam	V 50.9 Vanadium	52.0 Chromium	Ma 54.9 Manganese	55.8 Iron	58.9 Cobalt	Ni 58.7 Nickel	63.5 Copper	2n 65.4 Zinc	Ga 69.7 Gallium	Ge 72.6 Germanium	74.9 Arsenic	54.0 54.0 Selenium	By 74.4 Bromine	Kr 83.8 Krypton
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
R6 85.5	S√ 87.6	g 88.4	71.2	N6 92.9	Mo 96.0	T _E (98)	Ra 101.1	102.9	106.4	107.9	112.4	la 114.8	Sn 118.7	56 121.8	Te 127.6	126.9	Xe 131.3
Rubidium	Streeting	Sttrium	Zircotium	Niobiam	Molybdenum	Technetiam	Ruthenium	Rhodiam	Palladism	Silver	Condmisson	ladium	Tin	Antimong	Tellariam	lodine	Xenon
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.9	B _A 137.3	57-71 Lanthanoids	#f 178.5	Ta 180.9	W 183.8	Ru 186.2	0s 190.2	lr 192.2	P+ 195.1	497.0	Hg 200.6	TI 204.4	Рь 207.2	209.0	P ₀ (210)	At (210)	Ra (222)
Cresian	Barian		Hafniam	Tantalam	Tungsten	Rhenium	Osmium	Iridian	Platinam	Gold	Mercary	Thallism	Lead	Bismath	Poloniam	Astative	Radon
87	88	nd (0.0	104 Rf	105	106	107	108	109 M+	110	111	112	113 Nk	114	115 Me	116	117 Ts	118
(223) Francinm	(226) Radium	89-103 Actinoids	(261) Rutherfordium	Db (262) Dubnium	(266) Seaborgium	Bk (264) Bohrinm	Hs (267) Hassium	(268) Meitnerium	(271) Darmstadtism	Rg (272) Roentgenium	(285) Copernicium	(280) Nikonium	(289) Fleroviam	(289) Moscovium	(292) Livermorium	(294) Tennessine	09 (294) Oganesson

57 La 138.9 Lanthagum	58 Cu 140.1 Curium	59 Pr 140.9 Praseodymism	60 NJ 144.2 Neodymium	61 Pm (145) Promethium	62 Sm 150.4 Samariam	63 En 152.0 Enropiam	64 01 157.3 Gadolinium	65 Tb 158.9 Terbian	66 Dy 162.5 Dysprosium	67 Ho 164.9 Holminm	68 Er 167.3 Erbinm	69 Tm 168.9 Thaliam	70 % 173.1 %Herbiam	71 La 175.0 Latetium

The value in brackets indicates the mass number of the longest-lived isotope

Sub-Section: Electron Configurations using the Periodic Table

Let's have a look at why it's arranged the way it is!

7

The Periodic Table

Contains all <u>US</u> known elements, arranging them in terms of **increasing** Otomic

Active Recall

- There are 7 horizontal rows in the periodic table called _______.
- The period number represents how many the element has.

Let's have a look at why it's arranged the way it is!

Question 1

What is the shell model electron configuration of each of the following and state which period it appears in in the periodic table?

a. He $\rightarrow \lambda$

c. Mg -> 12

2

2,8,2

b. N -> 7

d. Ca

a,5

2,8,8,2

Exploration: Separating Periodic Table into Blocks

- The periodic table can be separated into blocks:
- The subshell of the high is that of the block the element is in.

Periodic table of the elements

s-k	plock																
1 H 1.0 Hydrogen		_							9			p-blo	ık				2 He 4.0 Helium
3 Li 6.9 Lithium	4 Be 9.0 Beryllium						Atomic Relative atom	ic mass 19	17.0	ool of element , of element		5 B 10.8 Boron	6 C 12.0 Carbon	7 N 14.0 Nitrogen	8 0 16.0 0xygen	9 F 19.0 Fluorine	10 Ne 20.2 Neon
11 Na 23.0 Sodium	12 Mg 24.3 Magnesium	d- 6	lock									13 Al 27.0 Aluminium	14 Si 28.1 Silicon	15 P 31.0 Phosphovus	16 S 32.1 Salfar	17 Cl 35.5 Chlorine	18 Ar 39.9 Argon
19 K 39.1 Potassium	20 Ca 40.1 Calcium	21 Sc 45.0 Scandinm	22 Ti 47.9 Titanium	23 V 50.9 Vanadium	24 Cv 52.0 Chromium	25 Mn 54.9 Manganese	26 Fe 55.8 Ivon	27 Co 58.9 Cobalt	28 Ni 58.7 Nickel	29 Cu 63.5 Copper	30 Zn 65.4 Zinc	31 Ga 69.7 Gallium	32 Ge 72.6 Germanium	33 As 74.9 Arsenic	34 Se 79.0 Selenium	35 Br 79.9 Bromine	36 Kr 83.8 Krypton
37 Rb 85.5 Rabidium	38 Sv 87.6 Strontium	39 Y 88.9 YHrium	40 Zv 91.2 Zirconium	41 Nb 92.9 Niobium	42 Mo 96.0 Molybdenum	43 Tc (98) Technetium	44 Ru 101.1 Ruthenium	45 Rh 102.9 Rhodium	46 Pd 106.4 Palladium	47 Ag 107.9 Silver	48 Cd 112.4 Cadmium	49 In 114.8 Indiam	50 Sn 118.7 Tin	51 S6 121.8 Antimony	52 Te 127.6 Tellurium	53 l 126.9 lodine	54 Xe 131.3 Xenon
55 Cs 132.9 Cresium	56 Ba 137.3 Barium	57-71 Lanthanoids	72 Hf 178.5 Hafnium	73 Ta 180.9 Tantalum	74 W 183.8 Tungsten	75 Re 186.2 Rhenium	76 0s 190.2 0smium	77 lv 192.2 lvidium	78 Pt 195.1 Platinum	79 Au 197.0 Gold	80 Hg 200.6 Mercary	81 Tl 204.4 Thallium	82 Pb 207.2 Lead	83 Bi 209.0 Bismuth	84 Po (210) Polonium	85 At (210) Astatine	86 Rn (222) Radon
87 F	88 Ra	89-103	104 Rf	105 Db	106 Sq	107 Bk	108 Hs	109 M+	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 0 ₄

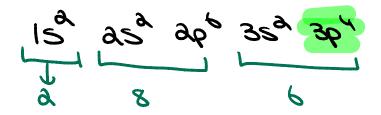
La Ca Pr NA Pm Sm Eu GA Tb Dy 138.9 140.1 140.9 144.2 (145) 150.4 152.0 157.3 158.9 162.5	y Ho	H₀ E	. т.	de	
138.9 140.1 140.9 144.2 (145) 150.4 152.0 157.3 158.9 162.5			r Im	96	Lu
				173.1	175.0
Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosio	osium Holmium	olmium Erb	um Thulium	9Herbium	Lutetium

84	90	91	92	93	94	45	96	97	48	99	100	101	102	10.3
Ae	Tk	Pa	U	Np	Pu	Am	Cm	₽k	CP	Es	Ťin.	W	No	Lr
(227)	232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)
Actinium	Thorium	Protactinium	Uranium	Neptunium	Platoniam	Americiam	Curium	Berkelium	Californiam	Einsteinium	Fermium	Mendelevium	Nobelium	Lauvencium

f-block

The value in brackets indicates the mass number of the longest-lived isotope

NOTE: The elements found in the d-block are known as _____.


Question 2 Walkthrough.

Write Schrödinger's electronic configuration for each of the following elements, by using the periodic table:

a.

i. Sulphur (S)

ii. Hence, write the shell model for sulphur from Schrödinger's electronic configuration.

b. Iron (Fe)

TIP: Using the periodic table makes writing Schrödinger's electronic configuration much easier!

Question 3

Identify the element by looking at the electron configuration.

a. $1s^2 2s^2 2p^6 3s^2 3p^5 \rightarrow 17$

CI

b. $1s^22s^22p^3$

N

Question 4 (5 marks)

Explain why the periodic table includes the following, with reference to shells and subshells:

a. Two elements in the first period. (1 mark)

. Growenz in 121 bourge 36.

b. Eight elements in the second period. (2 marks)

· In the second period & filling or and e-she.

· the de- shew had be-

c. No transition elements in the first three periods. (2 marks)

their 30 suchens in 0 places - filling

or the start of the Linear is fined to an ing

NOTE: The d-block orbitals start on the $3^{\rm rd}$ electron shell so their period and the subshells they fill up are **offset by 1** (e.g. the $4^{\rm th}$ period elements fill up the 3d orbitals).

What happens to transition metals as we go across the period on the periodic table?

Active Recall: What does 'valence electrons' mean?

S USAN ESKO	_
-------------	---

1		
Space for Personal Notes		

Sub-Section: Valence Electrons in the Periodic Table

Exploration: Transition Metal Electron Configurations

Periodic table of the elements

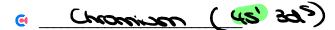
Sm. Eq. 01 Tb Dg Ho Er Tm 16 La 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.1 175.0	152.0	150.4	61 Pm (145) Promethium	60 NJ 144.2 Neodymium	59 Pr 140.9 Prascodymism	58 Ca 140.1 Carium	57 La 138.9 Lanthanum
--	-------	-------	---------------------------------	--------------------------------	-----------------------------------	-----------------------------	--------------------------------

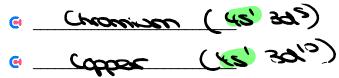
The value in brackets indicates the mass number of the longest-lived isotope

As we go across the period from elements 21 (Scandium) to 30 (Zinc), what happens to Schrodinger's electronic configuration?

Scandium: 1s²2s²2p⁶3s²3p⁶3d¹4s²

Titanium: $1s^22s^22p^63s^23p^63d(4s^2)$


Zinc: $1s^22s^22p^63s^23p^63d^1(4s^2)$



What happens to the number of valence electrons?

Are there any exceptions? (Hint: think back to last week!)

What happens to non-metals as we go across the period?

Active Recall: Which block are non-metals found in the periodic table?

Exploration: Non-Metal Electron Configurations

- \blacktriangleright As we go across the period from group 13 to group 18, the p-orbital goes from ______
- The number of valence electrons will [increase] / [decrease] from _______.

Groups

- Definition:
 - The 18 vertical columns of elements are called
 - Group 1-2 and 13-18 ell the number of Secretary

Groups & Valence Electrons

Periodic table of the elements

12	2	3	4	5	6	7	8
1 2	3-12	13	14	15	16	17	18

1 H 1.0 Hydrogen								_									2 He 4.0 Helium
3 Li	4 Bu						Atomic		79 Au Suni	rol of element		5 %	6	7 N	8 0	9	10 Ne
6.9 Lithium	9.0 Berylliam						Relative atom	,	77.0	of element		10.8 Boron	12.0 Carbon	14.0 Nitrogen	16.0 Охудел	19.0 Flaorine	20.2 Neon
11 Na 23.0 Sodium	12 Mg 24.3 Magnesium				Tra	ınsitio	n Mo	tals				13 Al 27.0 Alaminian	14 Si 28.1 Silicon	15 P 31.0 Phosphorus	16 S 32.1 Sulfur	17 Cl 35.5 Chlorine	18 Ar 39.9 Argon
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K 39.1 Potassium	Ca 40.1 Calcium	Sc 45.0 Scandium	Ti 47.9 Titanium	V 50.9 Vanadium	Cr 52.0 Chromium	Ma 54.9 Manganese	Fe 55.8 Iron	Co 58.9 Cobalt	Ni 58.7 Nickel	Cu 63.5 Copper	Za 65.4 Ziac	Ga 69.7 Gallian	Ge 72.6 Germanium	As 74.9 Arsenic	Se 79.0 Selection	Br 79.9 Bromine	Kr 83.8 Krypton
37 Rb 85.5 Rabidian	38 Sr 87.6 Strentium	39 g 88.9 gHrium	40 Zr 91.2 Zirconium	41 Nb 92.9 Niobium	42 Mo 96.0 Molybdenum	43 Tc (98) Technetium	44 Ru 101.1 Ruthenium	45 Rh 102.9 Rhodina	46 PJ 106.4 Palladism	47 Ag 107.9 Silver	48 Cd 112.4 Cndnium	49 In 114.8 Indian	50 Sa 118.7 Tin	51 S6 121.8 Antimony	52 Te 127.6 Tellariam	53 126.9 cdine	54 Xe 131.3 Xenon
55 Cs 132.9 Cresium	56 Ba 137.3 Barium	57-71 Lanthanoids	72 HP 178.5 Hafnium	73 Ta 180.9 Tantalum	74 W 183.8 Tungsten	75 Re 186.2 Rhenium	76 Os 190.2 Osmium	77 r 1922 ridium	78 Pt 195.1 Platinum	79 Au 197.0 Gall	80 Hg 200.6 Mercary	81 TI 204.4 Thallinn	82 Pb 207.2 Lead	83 Bi 209.0 Bismath	84 Po (210) Polonium	85 At (210) Astatine	86 Rn (222) Radon
87 Fr (223) Francism	88 Ra (226) Radium	89-103 Actinoids	104 Rf (261) Rutherfordium	105 Db (262) Dubnium	106 Sg (266) Seaborgium	107 Bh (264) Bohrium	108 Hs (267) Hassiam	109 Mt (268) Meitnerium	110 Ds (271) Darmstadtium	111 Rg (272) Roentyenium	112 Cn (285) Copernicium	113 Nh (280) Nikonium	114 Fl (289) Flerovium	115 Mc (289) Moscoviam	116 Lv (292) Livermorium	117 Ts (294) Teanessine	118 Og (294) Oganesson

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ca	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	96	La
138.9	140.1	140.9	144.2	(145)	150.4	1520	157.3	158.4	1625	164.9	167.3	168.9	173.1	175.0
Lanthanom	Carium	Prascodgminm	Neodymium	Promothium	Samarium	Europium	Gadolinium	Terbian	Dysprosinm	Holminn	Erbium	Thaliam	9Herbiam	Latetium
89	40	91	92	93	94	95	96	97	98	99	100	101	102	103
Az	Th	Pa	U	Np	Pa	Am	Cm	Bk	CP	Es	Fm	Md	No	Lr
(227)	232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)
Actinium	Thorium	Protactinium	Uranism	Neptunium	Plutoniam	Americiam	Carium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelinm	Lanvencium

The value in brackets indicates the mass number of the longest-lived isotope

- Across any period in the *d*-block, the number of valence electrons remains the same at two.
- The only exceptions are group 6 and 11 (chromium/copper exceptions).
- In the s and p-blocks, the number of valence electrons corresponds to the $\frac{q_{p}}{q_{p}}$

TIP: With the exception of groups 3-12 (transition metals), the last number represents the number of valence electrons (e.g. group 15 has 5 valence electrons).

Try some questions!

Question 5

How many valence electrons do elements in each of the following groups have?

a. Group 1

1

b. Group 16 — 10

6

c. Group 17

7

Question 6

By only using the location of the following elements on the periodic table, state the:

Number of electron shells it has.

Number of valence electrons it has.

Subshell of the highest energy it has. —

a. Cobalt

b. Chlorine

3,7, p

Question 7

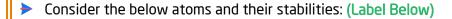
All members of a group have the same number of valence electrons except for one group. Which group is that and which element is the exception to the trend?

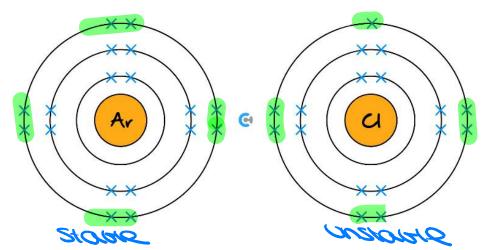
Crop 18 > 8 vovence e

He only has de - I a vouence e

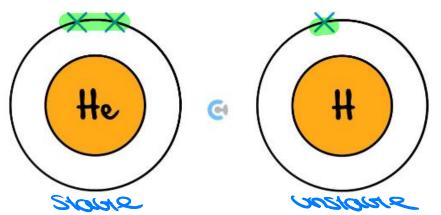
<u>Discussion:</u> Why isn't helium classified in group 2 and the s-block of the periodic table?

- · He has different proporties -> non-metals
- He has a full ower shell


<u>Active Recall:</u> What does the Octet Rule State? How many electrons do atoms want to have in the valence shell?



Atoms need be to fill other smell



Exploration: Octet Rule in Atoms

Consider Helium (He) and Hydrogen (H):

- The maximum number of electrons that can fit in the valence shell is ________
- Atoms with an already full outer shell are considered as being [unstable] / [stable].
- Which group in the periodic table has a full outer shell?

This group is known as the <u>house</u> and Helium falls within this group.

Noble Gases

Elements in group 18 are known as the noble gases. They do not participate in any type of intramolecular bonding, as they have full outer shells.

NOTE: Noble gases are gases.

Key Takeaways

- ☑ There are 7 horizontal rows in the periodic table called periods.
- ☑ The period number represents how many **shells** the element has.
- ☑ The periodic table can be separated into blocks:

Periodic table of the elements

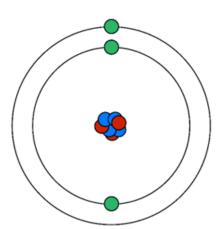
f-block

The value in brackets indicates the mass number of the longest-lived isotope

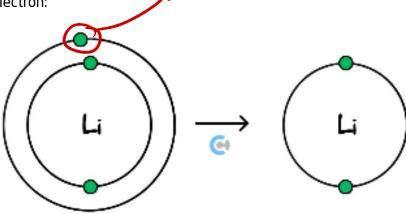
- ☑ The 18 vertical columns of elements are called **groups**
- ✓ Only groups 1-2 & 13-18 tell the number of valence electrons.
- Elements in group 18 are known as noble gases and are unreactive due to full outer shells.

Section B: Ionisation Energy & Effective Nuclear Charge

First Ionisation Energy


Definition: The first ionisation energy is the energy required to _______one electron from an element in a gaseous state.

Why is it called the first ionisation energy?


Exploration: First Ionisation Energy

Lithium (Li):

<u>Protons</u>	<u>Electrons</u>	<u>Overall Charge</u>
3	3	+3-3 = 0

After losing an electron:

<u>Protons</u>	<u>Electrons</u>	<u>Overall Charge</u>
3	2	+3-2 = +1

As it's charged, we call it an ______, more specifically a ______.

Definition

First Ionisation Energy

The first ionisation energy is the **energy required** to remove the **first** electron, or the energy required to **ionise** the atom.

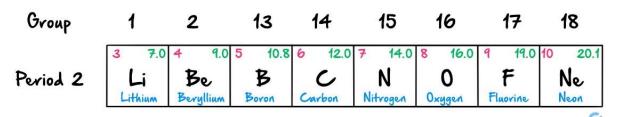
NOTE: It is called the first ionisation energy as it is the energy required to remove the first electron.

Extension: Second Ionisation Energy

While there is a second ionisation energy, it is not covered in VCE Chemistry!

Sub-Section: First Ionisation Energy Across a Period

<u>Discussion:</u> Does every element have the same first ionisation energy?

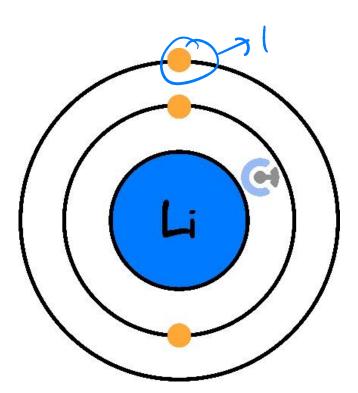


How does the first ionisation energy change across a period?

Exploration: Period 2 Element Trends

What are the Shell Model electron configurations for each of the elements? (Label Below)

Shell Model Configuration

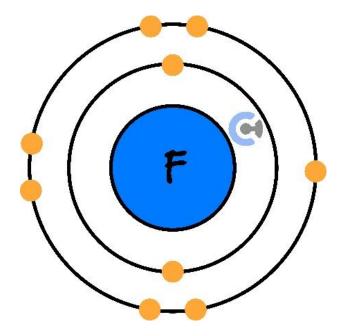

- According to the Octet rule, the most stable element here is _______
- As such, <u>here</u> is the most difficult to remove one electron from.
- Neon (Ne) has the _____ first ionisation energy as it already has a full outer shell and thus will _____ giving up another electron.

Let's break this idea down further!

Exploration: Lithium (Li)

What are two ways it can achieve a full outer shell?

Which of these two is the easiest?


High or low first ionisation energy?

Exploration: Fluorine (F)

What are two ways it can achieve a full outer shell?

goin (e)

Are losing electrons more or less likely?

goin 12


High or low first ionisation energy?

wide

<u>Discussion:</u> What happens to the first ionisation energy as we go across the period?

Increase

Trend

First Ionisation Energy Across a Period

The first ionisation energy increases across the period, as it becomes easier to gain electrons instead of losing them to obtain a full outer shell.

Let's have a look at a question together!

Question 8 (2 marks) Walkthrough.

a. State whether oxygen or carbon is more likely to have a higher first ionisation energy.

b. Explain whether sodium or aluminium is more likely to have a lower first ionisation energy. (2 marks)

Monde (- 2 samuel ed muites.

1050 that 2 - > low resistance

Try a question for yourself!

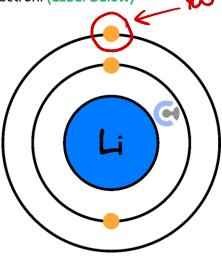
Question 9

A sealed vessel contains an element, which is known to be either arsenic (As) or bromine (Br). Using selenium (Se) for reference, it is found that more energy is required (compared to selenium) to completely remove a single electron from its electron cloud.

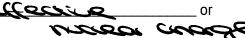
Identify which element is inside the sealed vessel.

Question 10 Additional Question.

Predict whether calcium or titanium would have a lower first ionisation energy.



Sub-Section: Effective Nuclear Charge or Core Charge


Exploration: Effective Nuclear Charge/Core Charge

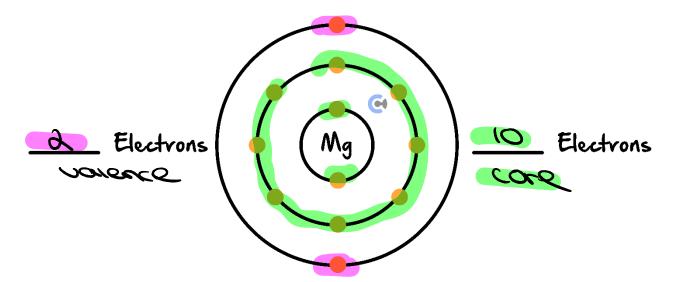
- Lithium atom has ______ & 3 electrons.
- Suppose you are the valence electron: (Label Below)

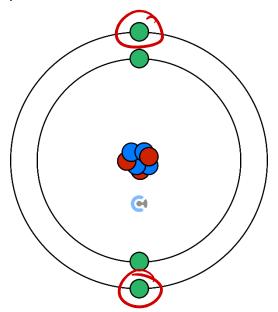
Considering the atom above:

Attraction/Repulsion	Attraction/Repulsion to	<u>'Net"</u>	Effective Nuclear
to Nucleus	Other Electrons	Attraction/Repulsion	Attraction
+ 3	-a	+3 -8	+\

Effective Nuclear Charge/Core Charge

- Definition:
 - The effective nuclear charge is the attractive force 'felt' by the valence electrons.
 - First ionisation energy and other trends can be discussed as **effective nuclear charge**.




Exploration: Core Electrons & Valence Electrons

- ➤ Valence electrons: Electrons in the ______ shell. (Label Below)
- Core electrons: Electrons in ______ shells. (Label Below)

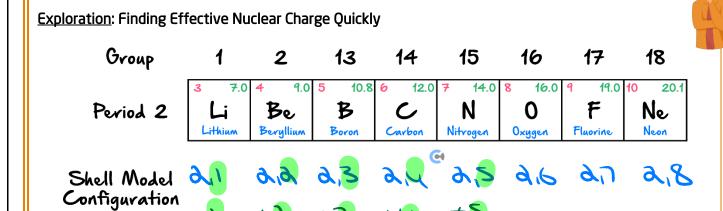
Exploration: Calculating Effective Nuclear Charge

Beryllium (Be) has ______ protons & 4 electrons.

Fill in:

Attraction to Nucleus	Repulsion to Other Electrons	Effective Nuclear Charge
+4	-2	+2

Operations:

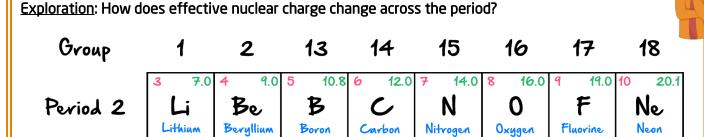

Formulae:

Effective nuclear charge = no. of protons - no. of core electrons

NOTE: Core charge is the amount of <u>Social provided</u> to valence electrons from the nucleus by core electrons. **The greater the shielding, the lower the core charge.**

Is there a quicker way of finding the core charge?

<u>Discussion:</u> Is there a quicker way to find the effective nuclear charge?



Core Charge Calculation Definition

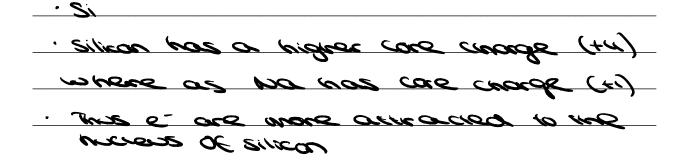
Effective nuclear charge can be found by counting the number of ______ electrons, which is the _____ number!

Let's bring this idea back to the trend!

Effective +1 +2 +3
nuclear
charge

- Across the period, the effective nuclear charge of the atoms [increases] / [decreases].
- As effective nuclear charge increases, electrons are [more] / [less] attracted to the nucleus.
- Hence, it is [easier] / [harder] to remove an electron from the atom.
- First ionisation energy [increases] / [decreases] as effective nuclear charge increases.

NOTE: Use effective nuclear charge to justify whether the first ionisation energy is high or low!



Let's have a look at a question together!

Question 11 Walkthrough.

Explain whether sodium (Na) or silicon (Si) would have a greater first ionisation energy.

Sample Response: First Ionisation Energy

- \blacktriangleright As the effective nuclear charge of x is higher, it feels a greater attraction to the nucleus.
- Therefore, electrons are harder to remove from the atom.
- More energy is required to remove them from the atom.
- They have a greater first ionisation energy.

Your turn!

Question 12

State the effective nuclear charge of each of the following atoms:

a. Rubidium (Rb)

+1

b. Iodine (I)

47

c. Tin (Sn)

44

d. Rank these elements in terms of decreasing first ionisation energy.

I, Sn, Rb

Question 13 (3 marks)

By referring to effective nuclear charge, explain whether tin (Sn) or antimony (Sb) has a higher first ionisation energy

so has a core conge of the where as

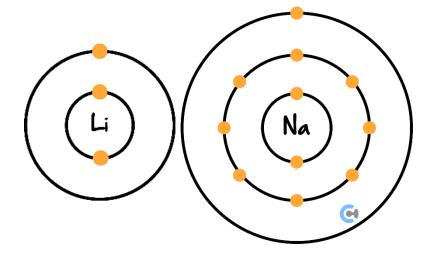
commony has a case charge +1. This means

pupaino in the the de de source som es

Ebrowa

Question 14 (2 marks) Additional Question.	
Explain why neon has a higher first ionisation energy than sodium.	
TIP: Regardless of what the question says, it's easier to refer to effective nuclear charge to justify your answer!	w
What happens to the trend down a group?	
Space for Personal Notes	

Sub-Section: First Ionisation Energy Along a Group


Exploration: First Ionisation Energy Along a Group

Group 1 elements:

<u>Alkali Metals</u>	Atomic Number	Complete Electronic Configuration
Li	3	2, 1
Na	11	2, 8, 1
К	19	2, 8, 8, 1
Rb	37	2, 8, 18, 8, 1
Cs	55	2, 8, 18, 18, 8, 1
Fr	87	2, 8, 18, 32, 18, 8, 1

The difference between each of the group 1 elements?

Lithium and sodium:

- As the number of electron shells increases (as we go down a group), the distance between the nucleus and the valence electrons [increases] / [decreases].
- The strength of attraction between the nucleus and valence electrons [strengthens] / [weakens].
- Thus, it would be **[easier]** / **[harder]** to remove an electron, and so the first ionisation energy as we go down the group **[increases]** / **[decreases]**.

First Ionisation Energy Down a Group

First ionisation energy [increases]/[decreases] down the group as the valence electrons are located further from the nucleus, and thus feel a weaker pull.

Try some questions!

Question 15

For each of the following sets, rank them in terms of increasing the first ionisation energy.

a. Al, In, B

c. F, O, Br

In, AI, B

80,0,7

VI 17151 VII VI

... 114, 11, Ga

Question 16 (3 marks)

Determine whether Calcium (Ca) or Sulphur (S) has a greater first ionisation energy and explain why.

. Enther word 36 swent names of concinu

105 4 6- 24611

· Also supra nos a care cronge at +b

Et einsciolo 20 saera

This superior of F.I.E.

Sub-Section: Metallic Character

Metallic Character

The metallic character is the tendency of an element to lose electrons and form Color: blue, b

Active Recall: What concept is linked to losing an electron and becoming an ion?

first ionisation enough

Discussion: Which element has the greatest metallic character?

Francisco

NOTE: Metallic character is directly linked to the first ionisation energy!

Try a question!

Question 17

Which of the following is correct?

- **A.** Potassium has a higher first ionisation energy than calcium.
- **B.** Sodium has a greater metallic character than caesium.
- **C.** Hydrogen has a greater metallic character than beryllium.
- **D.** Rubidium has a greater metallic character than magnesium.

NOTE: Metallic character increases as first ionisation energy ______.

Key Takeaways

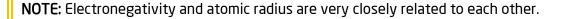
- ☑ The first ionisation energy is the energy required to remove one electron from an element.
- Across the period, the first ionisation energy increases.
- ☑ The effective nuclear charge is the attractive force 'felt' by the valence electrons.
- ☑ Effective nuclear charge/core charge can be found by counting the number of **valence** electrons.
- First ionisation energy **decreases** down the **group** as valence electrons are further from the nucleus and feel a **weaker** pull.
- ✓ Metallic character increases as the first ionisation energy decreases.

Section C: Electronegativity and Atomic Radius

7

Let's have a look at some other trends in the periodic table!

Definition


Electronegativity

- Definition:
 - Electronegativity is the ability of an atom to attract ______ toward itself.

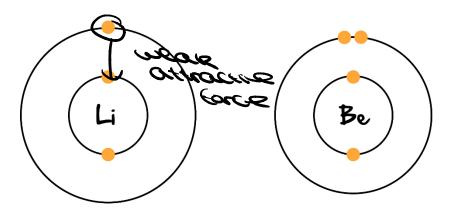
Definition

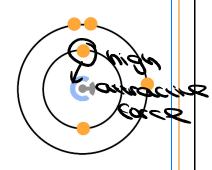
Atomic Radius

- Definition:
 - The atomic radius is the ______ of the atom or the distance between the centre of the nucleus to valence electrons.

Discussion: What else does atomic radius link to?

- NO Should
- cous cuade


Exploration: Going Across the Period


- Across the period, the effective nuclear charge [increases]/ [decreases].
- If effective nuclear charge increases, the nucleus pulls in electrons more [strongly] / [weakly].
- This is the exact definition of electronegativity.

- As effective nuclear charge increases, electronegativity [increases] / [decreases].
- As electrons are pulled closer in, the atomic radius [increases] / [decreases].
- Lithium (Li), Berylium (Be) and Boron (B) are all in the same period:

<u>Lithium (Li)</u>	<u>Berylium (Be)</u>	Boron (B)
Effective Nuclear Charge:	Effective Nuclear Charge:	Effective Nuclear Charge:
Electronegativity:	Electronegativity:	Electronegativity:

Atomic Radius:

Atomic Radius:

Atomic Radius:

Sono Constant

medison

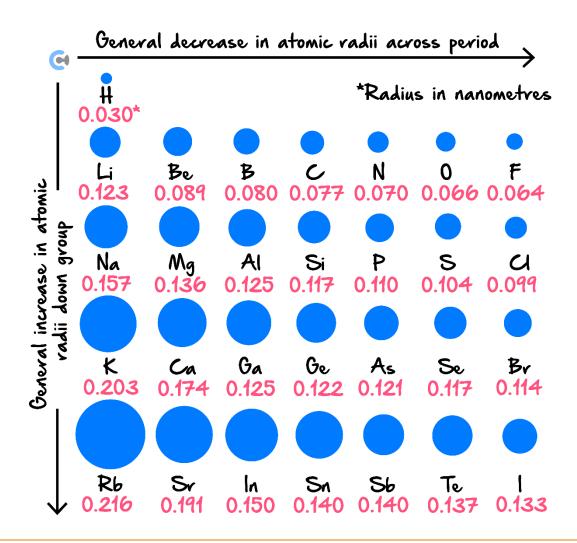
Small

Electronegativity and Atomic Radius Across a Period

- Definition
- Electronegativity increases across the period as effective nuclear charge increases.
- As electronegativity increases, electrons are pulled closer to the nucleus, **decreasing the atomic** radius of the atom.

Exploration: Going Down the Group

- Down the group, the effective nuclear charge [increases] / [stays the same] / [decreases].
- The distance of the valence shell from the nucleus [increases] / [stays the same] / [decreases].
- As such, the atomic radius [increases] / [stays the same] / [decreases] as the valence shell further increases.
- Consequently, the pull on the valence electrons by the nucleus becomes [stronger] / [weaker].
- As such, electronegativity [increases] / [decreases] down the group.


Electronegativity increases across a period.

tronegativity	us down a group.
世名	decrease

					t		\longrightarrow
1	2	G	13	14	15	16	17
Li	Be		В	C	N	0	F
1.0	1.6		2.0	2.6	3.0	3.4	4.0
Na	Mg		Al	Si	P	S	a
0.9	1.3		1.6	1.9	2.2	2.6	3.2
K	Ca		Ga	Ge	As	Se	Br
0.8	1.0		1.8	2.0	2.2	2.6	3.0
Rb	Sr		In	Sn	Sb	Te	l
8.0	1.0		1.8	2.0	2.1	2.1	2.7
Cs	Ba		Π	P6	Bi	Po	At
8.0	0.9		2.0	2.3	2.0	2.0	2.2
F	Ra						
0.7	0.9						

Atomic radii in nanometres of selected elements

<u>Properties Going Down a Group</u>

Effective Nuclear Charge	Atomic Radius	<u>Electronegativity</u>
Stays the same	Increases	Decreases

Let's have a look at a question together!

Sample Response: Electronegativity

- As we go across a period, core charge increases, so electrons have a greater attraction to the nucleus.
- Furthermore, as we go up a group, the atomic radius decreases as we have fewer shells, so the
 attraction between the nucleus and electrons increases.
- Therefore, electronegativity increases.

Try some questions!

Question 19 (4 marks)

a. Going across the periodic table, the numbers of protons and electrons increase. Why then does the size of the atoms decrease? (2 marks)

. Could per to libra as challs increase

CARLO DESCOUND SOM SOO S EACOM LINT.

luidos imono : ← verous ero uene = 3 ·

b. Explain the trend in atomic radius going down a group. (2 marks)

. Could gome or duch up 6_ evous increase

? evibor simor .

Question 20

For each of the following pairs of elements, state which element is more electronegative.

a. K, Ca

b. Be, Ca

S

Be

Sub-Section: Non-Metallic Character

<u>Jub Jection</u>. Non Fletame charact

Non-Metallic Character

The non-metallic character is the tendency of an element to gain electrons and form

Active Recall: What do we call the tendency of an element to attract/gain electrons?

electronegativity

<u>Discussion:</u> Which element has the greatest non-metallic character?

Elonine

NOTE: Non-metallic character is directly linked to electronegativity!

Try a question!

Question 22

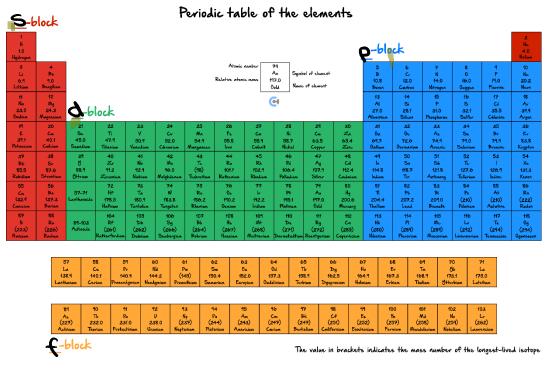
Which of the following is correct?

- **A.** Silicon is more electronegative than chlorine.
- **B.** Helium is the most electronegative element.
- C. Iodine has a greater non-metallic character than aluminium.
- **D.** Oxygen has a weaker non-metallic character than nitrogen.

NOTE: Non-metallic character increases as electronegativity ______.

CH12 [1.2] - Trends in the Periodic Table - Workbook

Contour Check


<u>Learning Objective: [1.2.1]</u> - Explain Why the Periodic Table is Arranged the Way it is, With Respect to Blocks, Periods, and Groups

Study Design

The periodic table as an organisational tool to identify patterns and trends in, and relationships between, the structures (including shell and subshell electronic configurations and atomic radii) and properties (including electronegativity, first ionisation energy, metallic, and non-metallic character and reactivity) of elements.

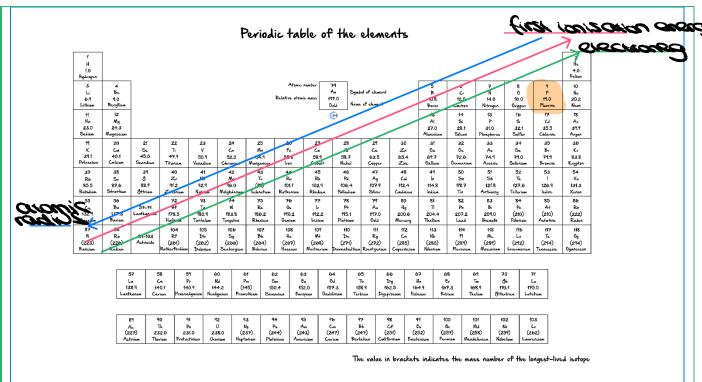
Key Takeaways

- The period number represents how many ______ the element has.
- ☐ The periodic table can be thought of as being separated into the following blocks (label below):

- The 18 vertical columns of elements are called <u>**9rosps**</u>.
- ☐ The groups (only for groups 1-2 & 13-18) tell the number of ______
- Elements in group 18 are known as the Course Source <a h
- They have full one was and are therefore, some I was

<u>Learning Objective: [1.2.2]</u> - Explain What the Terms 'Electronegativity, 'Atomic Radius', 'First Ionisation Energy', 'Metallic Character' and 'Non-Metallic Character' Mean, and Explain How They Vary Across a Period and Down a Group

Study Design


The periodic table as an organisational tool to identify patterns and trends in, and relationships between, the structures (including shell and subshell electronic configurations and atomic radii) and properties (including electronegativity, first ionisation energy, metallic and non-metallic character and reactivity) of elements.

Key Takeaways

is the ability of an atom to attract electrons toward itself.
Electronegativity as we go down a group.
Electronegativity as we go across the period.
Theis the tendency of an element to gain electrons and form anions.
Non-metallic character *** as electronegativity increases.
As electronegativity increases across a period, electrons are pulled closer to the nucleus, effectively consequence the atomic radius of the atom.
The Otomic rocks is a measurement of the size of the atom.
Atomic radius <u>incess 12</u> as we go down a group.
The <u>Cross iso</u> is the energy required to remove one electron from an element.
As we go across the period, the first ionisation energy income.
First ionisation energy down the group as the valence electrons are located further from the nucleus, and thus feel a weaker pull.
The mesous is the tendency of an element to lose electrons and form cations.

Metallic character <u>weeks</u> as first ionisation energy decreases.

<u>Learning Objective: [1.2.3]</u> Find the Effective Nuclear/Core Charge of an Element, Explain How It Varies Across a Period and Down a Group, and Apply It to Other Trends Observed in the Periodic Table

Study Design

The periodic table as an organisational tool to identify patterns and trends in, and relationships between, the structures (including shell and subshell electronic configurations and atomic radii) and properties (including electronegativity, first ionisation energy, metallic, and non-metallic character and reactivity) of elements.

Key Takeaways

The <u>Cociae</u> is a measure of the attractive force 'felt' by the valence electrons.
Effective nuclear charge/core charge can be found by simply counting the number of electrons.
Effective nuclear charge Story we someoing down a group.
Effective nuclear charge across a period.
The core charge can be thought of as the amount of provided to the valence

electrons from the nucleus **by the core electrons**.