

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Chemistry ½
Principles of Chromatography [1.10]
Test

20 Marks. 1 Minute Reading. 16 Minutes Writing.

Results:

Test Questions	/15	
Extension	/5	

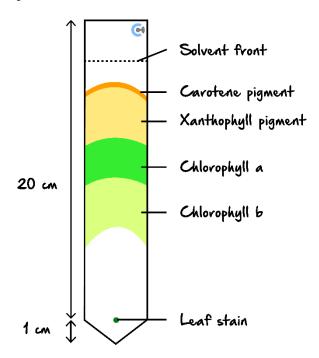
Section A: Test Questions (15 Marks)

Question 1 (4 marks)

Tick whether the following statements are **true** or **false**.

	Statement	True	False
a.	The mobile phase and stationary phase refer to periods of time.		
b.	Polar components like alcohol will be more attracted to a mobile phase which is also polar such as hexane.		
c.	Adsorption refers to a substance sticking to the outside of a solid surface, and desorption is when it is released from that solid surface.		
d.	Methane is an example of a polar compound whereas hydrochloric acid is an example of a non-polar compound.		
e.	The solvent front refers to the highest distance that the water reaches in paper chromatography.		
f.	In qualitative analysis of a compound, if two components have a similar retardation factor under similar laboratory conditions, they are likely to be the same.		
g.	A high rate of travel of a component indicates that it has a strong attraction to the mobile phase.		
h.	If paper chromatography is conducted with water as the mobile phase, methane will travel a lesser distance up the paper than methanol.		

Space for Personal Notes



Question 2 (6 marks)				
In the Lab, Kanta is practising her chemistry skills by making a paper chromatography set-up. For her mobile phase, she uses ethanol from her storage. At the base of the paper, Kanta places three drops $-A$, B , and C — each of which is a different component.				
a.	. Identify the mobile phase and the stationary phase in this set-up. (1 mark)			
b.	What can be revealed about the polarity molecule <i>C</i> if it travels the furthest distance? Why? (2 marks)			
c.	What can be revealed about the polarity of molecule A if it travels the least distance? Why? (2 marks)			
d.	Given that the solvent front reaches a distance of $10 \ cm$, with component B travelling a distance of $5 \ cm$, calculate the Rf value for this experiment. (1 mark)			
<u> </u>				
Space for Personal Notes				

Question 3 (5 marks)

Late at night, Sia wonders what the different pigments are inside of a green leaf stain. She uses the following set-up using water as the mobile phase.

a. With reference to adsorption and desorption, explain the movement of the carotene pigment up the paper. (2 marks)

b. What is likely the polarity of Chlorophyll b? (1 mark)

c. Given that Sia was under pressure to get better results, name and explain a way in which she could have seen more separation of the pigments. (2 marks)

Section B: Extension (5 Marks)

Qu	Question 4 (5 marks)				
Aft	After cramming for his test late at night, Arjun forgets how the experimental procedure for chromatography works.				
a.	Help Arjun re-arrange the following steps in the correct order. (1 mark)				
	1) Record the distance travelled by each component.				
	2) Place a drop of the mixed substance on the base of the paper.				
	3) Calculate the Rf value of each component.				
	4) Place the paper into a solution of water.				
b.	b. Explain why Rf value is calculated and how it can be used as an experimenter to identify a compound in a mixture. (2 marks)				
c.	Identify two situations in which the calculated Rf value may not be able to be used in order to identify a compound. (2 marks)				

Space for Personal Notes

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Chemistry ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

<u>1-on-1 Video Consults</u>	<u>Text-Based Support</u>
 Book via bit.ly/contour-chemistry-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 137 304</u> with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

