

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Chemistry ½
Models of Atoms [1.1]

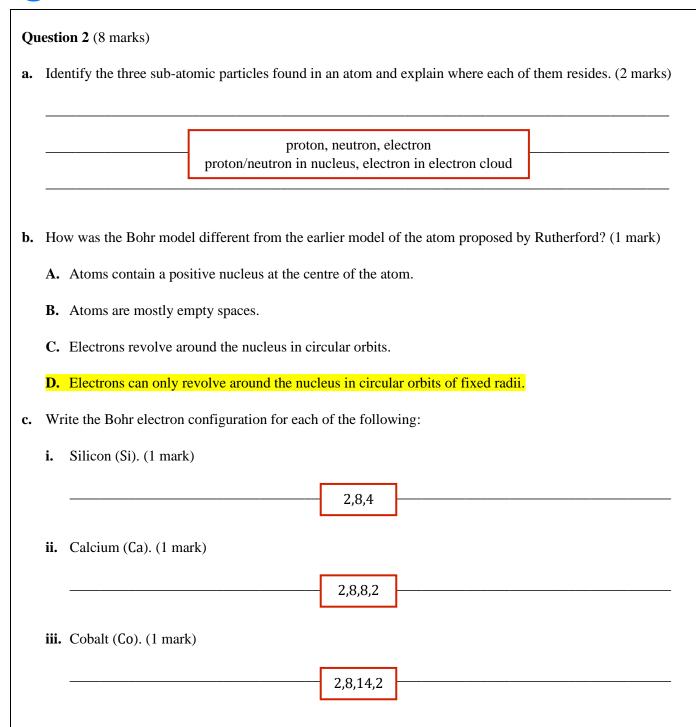
Test Solutions

20 Marks. 1 Minute Reading. 15 Minutes Writing.

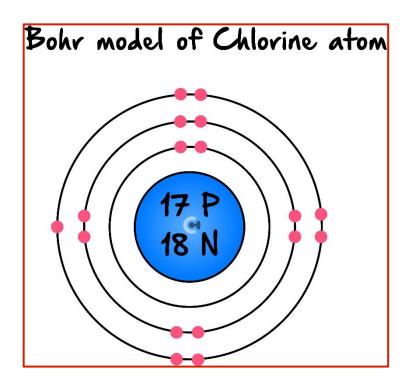
Results:

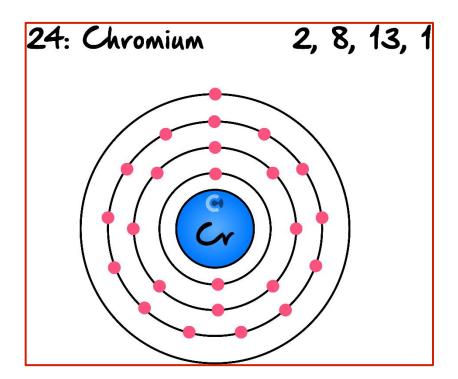
Test Questions	/ 15
Extension	/5

Section A: Test Questions (15 Marks)


INSTRUCTION: 15 Marks. 1 Minute Reading. 12 Minutes Writing.

Question 1 (3 marks) Tick whether the following statements are true or false .						
			True	False		
	a.	In ³⁷ ₁₇ Cl, there are 17 protons and 17 neutrons.		✓		
	b.	Bohr's model is different from the earlier model proposed by Rutherford, as it said that electrons can only revolve around the nucleus in circular orbits of fixed radii.	√			
	c.	In Bohr's model, electrons can occupy any energy level in the atom.		✓		
	d.	Schrödinger's model predicts the same discrete energy levels for hydrogen as Bohr's model.	✓			
	e.	Copper's electron configuration is $[Ar]4s^23d^9$.		✓		
	f.	All elements in the same group have identical valence electron configurations.		✓		


Space for Personal Notes



- **d.** Draw the shell diagrams for each of the following:
 - i. Chlorine. (1 mark)

ii. Chromium. (1 mark)

Question 3 (3 marks)

Schrodinger's electron configuration is an alternative method of depicting how electrons are arranged within an atom.

a. Write the ground state electron configuration of a potassium atom. (1 mark)

$$1s^22s^22p^63s^23p^64s^1$$

b. Write the electron configuration of Co³⁺. (1 mark)

$$1s^22s^22p^63s^23p^63d^6$$

c. Write the condensed electron configuration of chromium. (1 mark)

$$[Ar] 4s^2 3d^5$$

d. Identify the element that has an electron configuration of $1s^22s^22p^63s^23p^63d^{10}4s^1$ in the ground state. (1 mark)

Cu

Space for Personal Notes

Section B: Extension (5 Marks)

INSTRUCTION: 5 Marks. 3 Minutes Writing.

Question 4 (5 marks)
Chromium and copper have atypical electron configurations.
 a. Write the electron configuration for both elements and explain why their configurations deviate. (3 marks) Chromium (Cr): Expected: [Ar] 4s²3d⁴ Actual (atypical): [Ar] 4s¹3d⁵ Reason: Chromium adopts this configuration for the extra stability of a half-filled d-orbital (5 electrons in 3d). Copper (Cu): Expected: [Ar] 4s²3d⁰ Actual (atypical): [Ar] 4s¹3d¹0 Reason: Copper adopts this configuration for the extra stability of a fully filled d-orbital (10 electrons in 3d). b. Predict whether the configuration of gold (Au) will be [Xe] 6s²4f¹⁴5d⁰ or [Xe] 6s¹4f¹⁴5d¹⁰, and justify your answer. (2 marks)
[Xe] $6s^14f^{14}5d^{10}$ - Similar to copper, gold adopts an atypical configuration to achieve the extra stability of a fully filled d -orbital. Removing one electron from the $6s$ orbital minimises energy.

Space for Personal Notes

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Chemistry ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-chemistry-consult-2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message +61 440 137 304 with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

