

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Chemistry ½
Stoichiometry [0.15]

Workshop

Error Logbook:

New Ideas/Concepts	Didn't Read Question
Pg / Q #:	Pg / Q #:
Algebraic/Arithmetic/ Calculator Input Mistake	Working Out Not Detailed Enough
Pg / Q #:	Pg / Q #:

Section A: Recap (6 Marks)

Definition

<u>Learning Objective: [2.3.1] - Write Balanced Chemical Equations</u>

- To Balance an Equation:
 - Change the [coefficient] / [subscript].
 - Subscripts and superscripts [can] / [cannot] be altered when balancing an equation.
 - Leave any atoms that are 'isolated' or 'exist on their own' to balance [first] / [last].

Definition

<u>Learning Objective: [2.3.2] - Apply Stoichiometry to Find the Amount of Another Substance Used / Produced</u>

- ratios are used to convert between the amounts of substances in a chemical equation.
- To Perform Stoichiometry:
 - Multiply] / [Divide] by the coefficient of the chemical whose amount is **known**, to **reset** it to
 - [Multiply] / [Divide] by the coefficient of the chemical whose amount is unknown (being solved for).
 - Stoichiometric ratios are based on [moles] / [mass] and not [moles] / [mass].
 - Can Be Thought of As:

[unknown]/[known]
[unknown]/[known]

- Stoichiometry Calculation Steps:
 - Write the balanced chemical equation (if not already given).
 - Find the [mass] / [moles] of the substance provided.
 - Use stoichiometric ratios to find the amount of the unknown substance.

CONTOUREDUCATION

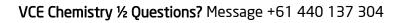
Learning Objective: [2.3.3] - Identify the Limiting Reagent When Reactants' Amounts are Known

Limiting and Excess Reagents

- The limiting reagent is the one that is [fully consumed] / [leftover].
- The excess reagent is the one that is [fully consumed] / [leftover].
- e _____ must be compared when determining what the limiting reagent is.

Limiting Reagent Determination

- Steps:
 - 1. Find [mass] / [moles] of each reactant.
 - 2. [Multiply] / [Divide] each reactant amount by its ______
 - **3.** Limiting reagent has a [greater] / [lesser] amount.



<u>Learning Objective: [2.3.4] - Apply Limiting Reagent to Calculate the Mass of Product(s) Formed, and to Calculate the Amount of Excess Reagent Leftover</u>

- The amount of product formed is dependent on the [limiting] / [excess] reagent.
- For Excess Reagent Calculations:

Firstly, identify what the excess reagent is. To find how much of the excess reagent is leftover:

- 1. Find $n(excess)_{reacted}$ by using _____ with the ____ reagent.
- **2.** $n(excess)_{leftover} =$

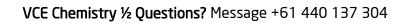
Question 1 Walkthrough.		
When an antacid tablet is used, calcium hydroxide $(Ca(OH)_2)$ interacts with hydrochloric acid (HCl) in the stomach to form inert calcium chloride $(CaCl_2)$ and water.		
a. Write the balanced chemical equation that occurs.		
b. If the molar mass of Calcium hydroxide $(Ca(OH)_2)$ is 75 g/mol , find the amount of moles of HCl that are required to fully react with 150 g of $Ca(OH)_2$.		
Space for Personal Notes		

Qι	Question 2 (6 marks) Walkthrough.		
Co	onsider the following chemical equation:		
	$2Ca(s) + O_2(g) \rightarrow 2CaO(s)$		
a.	If 60 g of Ca is reacted with 32 g of O_2 , identify the excess and limiting reagents. (2 marks)		
b.	Identify what mass of calcium oxide would form from this reaction. (2 marks)		
	How much of the everes reagent would be remaining often this reaction? (2 montes)		
c.	How much of the excess reagent would be remaining after this reaction? (2 marks)		

Section B: Warm Up (13 Marks)

INSTRUCTION: 13 Marks. 8 Minutes Writing.

Question 3 (3 marks)


Balance the following chemical equations:

- **a.** $P_4O_6(s) + I_2(g) \rightarrow P_2I_4(s) + P_4O_{10}(s)$. (1 mark)
- **b.** Na(s) + $H_2O(l) \rightarrow NaOH(aq) + H_2(g)$. (1 mark)
- $\textbf{c.} \quad \mathsf{Mg_2Si}(s) + \ \mathsf{H_2O}(l) \ \rightarrow \ \mathsf{Mg}(\mathsf{OH})_2(\mathsf{aq}) + \ \mathsf{SiH_4(g)}. \ (1 \ \mathsf{mark})$

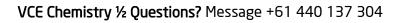
Question 4 (5 marks)

How many grams of lead (II) chloride is produced from the reaction of 15.3 g of NaCl and 60.8 g of Pb(NO₃)₂?

Ensure to state both the limiting and excess reagent, alongside identifying the full balanced equation.

Question 5 (5 marks)		
Take the following reaction between solid sulphur and oxygen gas.		
$2S(s) + 3O_2(g) \rightarrow 2SO_3(s)$		
a. In one reaction, a chemist reacts $3.45 g$ of sulphur in order to form SO_3 . What mass of sulphur trioxide would form if all of this sulphur is to react? (3 marks)		
b. In another reaction, 153 <i>g</i> of sulphur trioxide was formed. What amount of oxygen would have been required in this reaction? (2 marks)		

Section C: Ramping Up (8 Marks)


INSTRUCTION: 8 Marks. 6 Minutes Writing.

Question 6 (1 mark)

Which of these reactions are correctly balanced?

- A. $2\text{Fe} + 30_2 \rightarrow 2\text{Fe}_20_3$
- **B.** $2KCl + Cu(NO_3)_2 \rightarrow CuCl_2 + 2KNO_3$
- C. $2AgNO_3 + Na_2SO_4 \rightarrow 2AgSO_4 + 2NaNO_3$
- **D.** $C_2H_6 + 3O_2 \rightarrow 2CO + 3H_2O$

Qu	testion 7 (7 marks)
Co	nsider the reaction between pure sodium and water.
a.	Write the full balanced equation between these reactants. (1 mark)
b.	If 36 g of sodium reacts with 53 g of water, identify the excess and limiting reagents. (2 marks)
0	Identify the mass of the gaseous product that will be formed in this reaction. (2 marks)
c.	dentity the mass of the gaseous product that will be formed in this reaction. (2 marks)
d.	How much of the excess reagent would be remaining after this reaction? (2 marks)
Sp	ace for Personal Notes

Section D: Getting Trickier I (10 Marks)

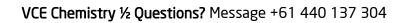
INSTRUCTION: 10 Marks. 8 Minutes Writing.

Question 8 (1 mark)

What is the balanced equation for the reaction between butane gas and oxygen gas, given that there is an abundance of oxygen gas and the reaction was conducted at 25°C?

- **A.** $C_4H_{10}(g) + 13O_2(g) \rightarrow 4CO_2(g) + 5H_2O(g)$
- **B.** $C_4H_{10}(g) + 70_2(g) \rightarrow 4C0_2(g) + 5H_2O(g)$
- C. $2C_4H_{10}(g) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(l)$
- **D.** $C_4H_{10}(g) + 70_2(g) \rightarrow 4C0_2(g) + 5H_20(l)$

Question 9 (9 marks)			
	Aleena develops a fascination for explosions and begins intensive research into combustion equations and reactions.		
a.	Wh	at is the difference between a complete and incomplete combustion reaction? (1 mark)	
b.	Wr	ite the combustion equation for the following fuels:	
	i.	C ₃ H ₈ . (1 mark)	
	ii.	CH ₃ CH ₂ OH. (1 mark)	
	iii.	C ₃ H ₁₈ . (1 mark)	
c.		e of the fuels Aleena combusts is methane - CH ₄ . She takes a total of 500 grams of methane and combusts a excess of oxygen.	
	i.	Identify the mass of oxygen which would have been consumed for this reaction. (3 marks)	
	ii.	What mass of water would be produced via this reaction? (2 marks)	



Section E: Getting Trickier II (11 Marks)

INSTRUCTION: 11 Marks. 10 Minutes Writing.

Qι	Question 10 (11 marks)			
An	unk	known compound is being analysed for its contents.		
a.	Let it is identified that the compound is comprised of 38.7% K, 13.8% N, and the remainder is oxygen.			
	i.	Calculate the empirical formula of this compound. (2 marks)		
	ii.	What is the molar mass given that the molecular ratio is 1:1? (1 mark)		

b.	A 5	$3.66 \times 10^{-1} g$ sample of the compound is then reacted with $8.44 \times 10^{-1} g$ of $(CH_3COO)_2Cu$.
	i.	Write the balanced equation. (1 mark)
	::	Identify the limiting and everes responts (2 montes)
	11.	Identify the limiting and excess reagents. (2 marks)
	iii.	Find the mass leftover of the excess reagent. (2 marks)
c.	Giv	ren the amounts above, find the mass of the product(s) formed. (2 marks)
d.	Fin	d the mass of the precipitate formed. (1 mark)

Space for Personal Notes	

Section F: VCAA-Level Questions I (10 Marks)

INSTRUCTION: 10 Marks. 30 Seconds Reading. 10 Minutes Writing.

ue	estion 11 (10 marks)
	anol is an important liquid chemical used in industry that is also toxic to humans. It is also known to be abustible.
	Write the fully balanced combustion reaction between ethanol and excess oxygen gas, assuming the reaction occurs at 25°C. (1 mark)

Eth	anol is added to traditional petrol (C_8H_{18}) to reduce the harmful emissions that enter the atmosphere.
i.	Given that, there exists 2.44×10^3 g of ethanol, calculate the amount of CO_2 emitted, in kg . (2 marks
ii.	In 2025, the standard light vehicle emission standard is going to be set to $105 g$ of CO_2 per km of trav
	Given that the above amount of ethanol was combusted, and the same amount of C_8H_{18} was also fully combusted for a particular vehicle, find the maximum amount of kilometres it should travel. (4 marks)
	·

VCE Chemistry ½ Questions? Message +61 440 137 304

c	The distance between Glen Waverley Station and Huntingtower is approximately 2.5 kilometres. The emission rate for the vehicle was measured to be 85 g of CO_2 per kilometre. The vehicle in use entirely depends on ethanol.
	Find the amount, in grams, of ethanol required to make this journey. (3 marks)
-	Space for Personal Notes
1	

Section G: Multiple Choice Questions (9 Marks)

INSTRUCTION: 9 Marks. 9 Minutes Writing.

Question 12 (1 mark)

When 1.0 mole of Cu₃FeS₃ and 1.0 mole of O₂ are mixed and allowed to react according to the equation:

$$2Cu_3FeS_3(s) + 7O_2(g) \rightarrow 6Cu(s) + 2FeO(s) + 6SO_2(g)$$

- **A.** No reagent is in excess.
- **B.** 5 mole of O_2 is in excess.
- C. $\frac{5}{7}$ mole of Cu₃FeS₃ is in excess.
- **D.** $\frac{2}{7}$ mole of Cu₃FeS₃ is in excess.

Question 13 (1 mark)

Inspired from VCAA Chemistry Exam 2007

https://www.vcaa.vic.edu.au/Documents/exams/chemistry/chem1_exam_07.pdf#page=2

When 2.54 g of solid iodine reacts with excess chlorine and the unreacted chlorine is evaporated, 4.67 g of a yellow product remains.

The empirical formula of the product is:

- \mathbf{A} . ICl_2
- \mathbf{B} . ICl_3
- C. ICl₄
- **D.** ICl₅

Question 14 (1 mark)

Inspired from VCAA Chemistry Exam 2010

https://www.vcaa.vic.edu.au/Documents/exams/chemistry/2010chem1-w.pdf#page=3

A sample of the insecticide dichlorodiphenyltrichloroethane (DDT), $C_{14}H_9Cl_5$, was found to contain 0.120 g of carbon.

What mass of chlorine was present in the sample?

- **A.** 0.127 *g*
- **B.** 0.355 *g*
- **C.** 0.994 *g*
- **D.** 1.01 *g*

Question 15 (1 mark)

Consider the following reaction:

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

If there was 2.0 g of nitrogen gas, then what is the amount of ammonia produced, in grams?

- **A.** 0.61 *g*
- **B.** 1.22 *g*
- **C.** 4.86 *g*
- **D.** 2.43 *g*

Question 16 (1 mark)

Given the following reaction:

$$2\mathrm{H}_2(\mathrm{g}) + \mathrm{O}_2(\mathrm{g}) \rightarrow 2\mathrm{H}_2\mathrm{O}(\mathrm{g})$$

Which amount will produce the greatest amount of product, given that the reaction will go to completion?

- **A.** 1.23 *g* of H₂.
- **B.** $1.23 g \text{ of } 0_2.$
- C. $4.55 \times 10^{-2} \ mol \ of \ H_2$.
- **D.** $4.55 \times 10^{-2} \ mol \ of \ O_2$.

Question 17 (1 mark)

The following reaction occurs in a test tube:

$$2Ag(s) + H_2S(aq) \rightarrow Ag_2S(s) + H_2(g) 0.0506$$

If we wanted to produce 12.55 g of Ag_2S , then how much silver, in grams, would we require?

- **A.** 19.34 *g*
- **B.** 5.46 *g*
- **C.** 10.92 *g*
- **D.** 9.67 *g*

Question 18 (1 mark)

The following reaction takes place, with 3.45 g of Al and 5.00 g of HCl. What is the limiting reagent?

$$2Al(s) + 6HCl(aq) \rightarrow 2AlCl_3(s) + 3H_2(g)$$

- A. Al
- \mathbf{B} . \mathbf{H}_2
- C. HCl
- **D.** The reaction goes to completion, so neither.

Question 19 (1 mark)

When 5.0 g of Mg reacts with excess HCl, how many grams of H_2 is produced, given the following equation?

$$Mg + 2HCl \rightarrow MgCl_2 + H_2$$

- **A.** 0.5 *g*
- **B.** 1.0 *g*
- **C.** 0.25 *g*
- **D.** 0.75 *g*

Question 20 (1 mark)

What is the stoichiometric ratio between the reagent with the lowest molar mass and the product with the highest molar mass in the following reaction?

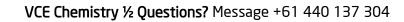
$$2\mathsf{KMnO_4(aq)} + 5\mathsf{FeSO_4(aq)} + 8\mathsf{H_2O(l)} \rightarrow 5\mathsf{Fe_2O_3(s)} + \mathsf{K_2SO_4(aq)} + 2\mathsf{MnSO_4(s)} + 8\mathsf{H_2SO_4(aq)}$$

- **A.** 8:1
- **B.** 8:5
- **C.** 4:1
- **D.** 1:1

Section H: VCAA-Level Questions II (7 Marks)

INSTRUCTION: 7 Marks. 30 Seconds Reading. 7 Minutes Writing.

Qι	ıesti	on 21 (7 marks)				
Pet	trol's	s main ingredient is typically octane, C ₈ H ₁₈ , a relatively long hydrocarbon.				
a.	Pet	Petrol can be combusted in the presence of oxygen.				
	i.	If there is a sample of 7.35×10^2 g of octane and 2.24×10^3 g of oxygen gas. Determine the excess and limiting reagents theoretically, if octane and oxygen typically have a 2:25 ratio. (2 marks)				
	ii.	Based on your answer from part a. i. , write the fully balanced reaction. Assume that the only possible carbon-based products are either CO ₂ or CO and the reaction occurs at 100°C. (1 mark)				
	iii.	Find the mass leftover of the excess reagent, in kilograms, using the reaction you identified in part a. ii. (2 marks)				


VCE Chemistry ½ Questions? Message +61 440 137 304

b.	b. Octane can be described as hygroscopic, where it repels water fairly well. Explain this phenomenor to octane's polarity and intermolecular bonding. (2 marks)					
Space for Personal Notes						

Section I: Extension Questions (8 Marks)

Question 22 (8 marks)							
Consider the following reaction:							
	$Ca(OH)_2(s) + 2HCl(aq) \rightarrow CaCl_2(s) + 2H_2O(l)$						
a. I	a. Find the percentage composition of calcium, relative to all reagents. (1 mark)						
_							
_							
_							
-							

•	Determine the limiting and excess reagents. (3 marks)		
i.	Find the amount of CaCl ₂ produced. (2 marks)		
	,		
::	Find the amount of the average reasont in mg left at the and of the reaction (2 marks)		
11.	Find the amount of the excess reagent, in mg , left at the end of the reaction. (2 marks)		
ce	for Personal Notes		
ce	for Personal Notes		
ce	for Personal Notes		

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Chemistry ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45 + raw scores, 99 + ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

-on- Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-chemistry-consult- 2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 137 304</u> with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

