

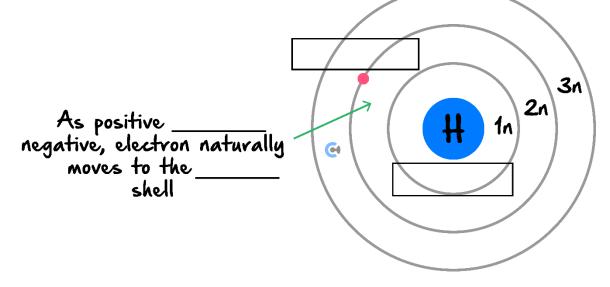
Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Chemistry ½

Models of Atoms & Trends in the Periodic Table [0.1]

Workshop

Section A: Recap

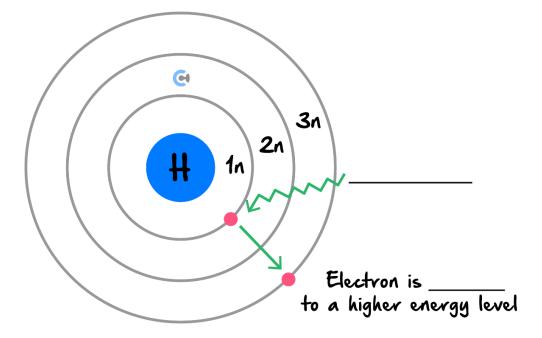

Rutherford's Gold Foil Experiment

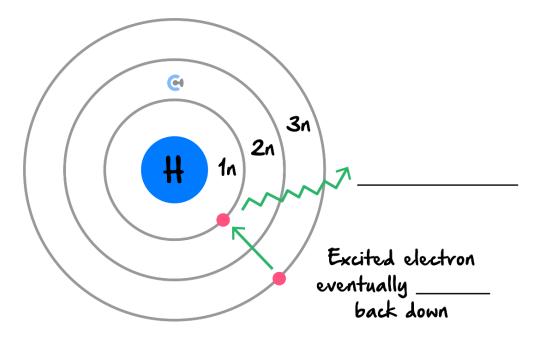
Definition

- Alpha particles were fired at a thin gold sheet.
- Some particles reflected back, but most particles passed through.
- The majority of an atom is empty space.

Ground State

- Electrons always try to go to the _____ energy level possible.
- The first electron shell is known as the ground state.

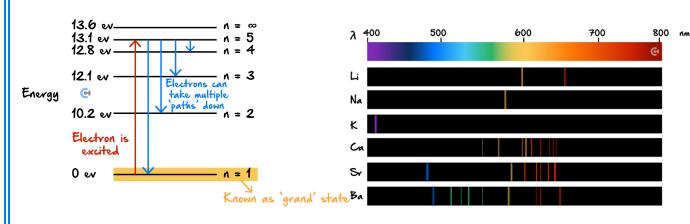



Electron Movement between Shells

When electrons are moved up to a higher energy level, energy is [inputted] / [outputted].

When electrons move down to a lower energy level, energy is [inputted] / [outputted] as ______

Electron Shell


➤ **Definition:** A ______ in the electron cloud of an atom at a _____ energy level, whereby an electron can be found.

Emission Spectra

- Each element has a _____ spectra of light when its electrons return to the ground state after being excited.

Maximum Number of Electrons

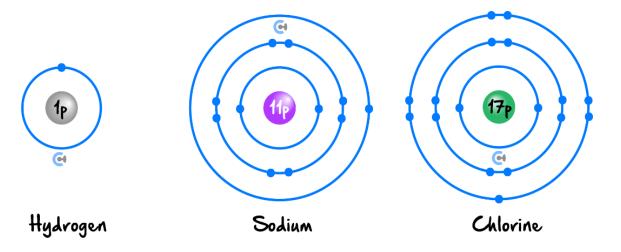
Maximum number of electrons that each shell can hold is:

Maximum Number of Electrons: $2 \times n^2$

Valence Shell / Valence Electrons

- Definition:
 - Valence Outer.
 - Valence Shell Outermost electron shell.
 - Valence Electrons Electrons in the ______ electron shell.

Octet Rule



Definition: The valence electron shell can only hold a maximum of _____ electrons.

Shell Model Diagrams

Shows the number of electrons which are present in each electron shell of an atom.

Question 1 (2 marks) Walkthrough.

Draw the shell model diagram for calcium.

Sub-Section: Schrodinger's Model

Orbital

- **Definition:** A region of space in which electrons exist ______, not in fixed discrete energy levels.
- Feature: Can hold up to 2 electrons.

Definition

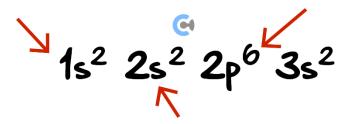
Orbital Capacity

There are four types of orbitals: s, p, d and f.

Type of Orbital	Number of Orbitals
S	
p	
d	
f	

Space for Personal Note

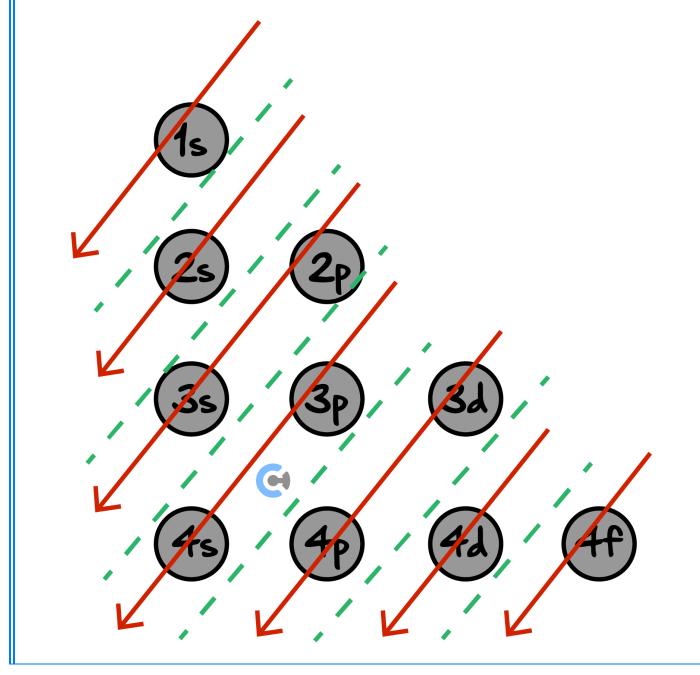
Subshells


The number of subshells in a given shell matches the shell number.

Shell number (n)	<u>Number of</u> <u>Subshells</u>	<u>Subshell</u> <u>Symbol</u>	<u>Number of</u> <u>Orbitals</u>	Maximum Number of Electrons in the Subshell	Total Number of Electrons in the Shell			
1	1	S						
2	2	S						
2	۷	р						
		S						
3	3	р						
		d						
		S						
4	4	р						
4	4	d						
		f						

Schrödinger's Electron Configurations

Representation:



Schrodinger's Model Sub-Shell Energy Levels

- Each subshell has different energy levels.
- For electron configuration, start from the lower energy levels and fill up to the higher energy levels.

Excited State Electron Configurations

If electrons are in higher energy levels without lower ones being filled then,	Excited state (e.g., $4^{ ext{th}}$ shell filled before $3^{ ext{rd}}$).
If lower energy subshells are not filled but higher ones are being filled then,	Excited state (e.g., $3p$ orbital is filled but not $3s$).

Chromium and Copper: Atypical Electron Configurations

Their Schrodinger electron configurations are:

Chromium: $1s^22s^22p^63s^23p^63d^54s^1$

Copper: $1s^22s^22p^63s^23p^63d^{10}4s^1$

Due to an increased stability in these forms.

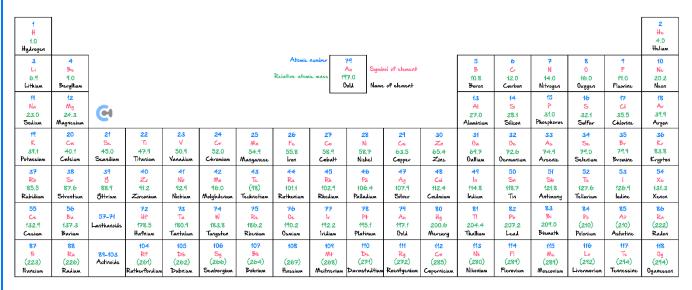
Condensed Electron Configuration

- Use: To 'get rid' of entire shells-worth of notation, for tidiness and efficiency.
- Notation: ______ in square brackets, as these are the elements with _____ which may be condensed.

Question 2 (2 marks) Walkthrough.

- **a.** Write the Schrödinger's electron configuration for cobalt. (1 mark)
- **b.** Write the condensed Schrödinger's electron configuration for Chromium (Cr). (1 mark)

Sub-Section: The Periodic Table



The Periodic Table

- Contains all _____ known elements, arranged in terms of increasing _____.
- The periodic table arranges all of the chemical elements in terms of ______

Periodic table of the elements

57	58	59	60	61	62	63	64	65	06	67	68	69	70	71
La	Ce	Pr	NJ	Pm	Sm	Eu	GJ	Tb	Dy	Ho	Er	Tm	96	La
138.9	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.4	162.5	164.9	167.3	168.9	173.1	175.0
Lanthanum	Ceriam	Praseodyminm	Neodymiam	Promethium	Samarium	Europium	Gadolinium	Terbiam	Dysprosium	Holminm	Erbium	Thuliam	9Herbiam	Latetiam
89	90	91	42	43	94	45	96	97	48	44	100	10f	102	103
Ac	Th	Pa	U	No	Pu	A _m	Cm	Bk	CF	Es	5 ₀	MJ	No	Lr

The value in brackets indicates the mass number of the longest-lived isotope

- There are 7 horizontal rows in the periodic table called ______
- The **period** number also represents how many ______ the element has.

s-	-bloc	k			ŧ	Periodi	ic tak	ole of	f the	elem	ents							
1 H 1.0 Hydrogen													p-61	ock				2 He 4.0 Helium
3 Li 6.9 Lithiam	4 Be 9.0 Berylliam						Atomio Relative ato	number	197.0	gmbol of ele ame of elem			5 B 10.8 Boron	6 C 120 Carbon	7 N 14.0 Nitroge	16	8 9 0 F 2.0 19.0 19en Fluorine	10 Ne 20.2 Neon
ff Na 23.0 Sodium	12 Mg 24.3 Magnesium	d- b	lock						G				13 Al 27.0 Aluninium	14 Si 28.1 Silicon	15 P 31.0 Phosphor	3	2.1 35.5	18 Ar 39.9 Argen
19 K 39.1 Potassium	20 Ca 40.1 Calsium	21 Sc 45.0 Scandian	22 Ti 47.9 Titaniam	23 V 50.9 Vanadium	24 Cr 52.0 Chromium	25 Mn 54.9 Manganese	26 Fe 55.8 Iron	27 Co 58.9 Cobalt	28 Ni 58.7 Nickel	29 Cu 63. Copp	5 6	30 Zn 5.4 Linc	31 Ga 69.7 Gallium	32 Ge 72.6 Germanium	33 As 74.9 Arsenic	74	4 35 Se Br 1.0 79.9 Julium Bromine	36 Kr 83.8 Krypton
37 Rb 85.5 Rubidium	38 Sr 87.6 Strontium	39 Y 88.9 Yttriam	40 Zr 91.2 Zirconium	41 N6 92.9 Niobium	42 Mo 96.0 Molybdenum	43 Tc (98) Technetium	44 Ra 101.1 Rathenium	45 Rh 1029 Rhodium	46 Pd 106.4 Palladiun	47 Ag 107 Silv	.9 11	48 Cd '2.4 dminm	49 In 114.8 Indiam	50 Sm 118.7 Tin	51 Sb 121.8 Antimor	12	7.6 126.9	54 Xe 131.3 Xenon
55 Cs 132.9 Cesium	56 Ba 137.3 Barium	57-71 Lanthanoids	72 Ht 178.5 Hatnium	73 Ta 180.9 Tantalum	74 W 183.8 Tungsten	75 Re 186.2 Rhenium	76 Os 190.2 Osmium	77 Ir 1922 Iridiam	78 Pt 195.1 Platinum	79 Au 197 Gol	.1 20	80 Hg 00.6 reary	81 Tl 204.4 Thallinm	82 Pb 207.2 Lead	83 Bi 209.0 Bismath	F (2:	10) (210)	86 R1 (222) Radon
87 Fr (223) Francinm	88 Ra (226) Radium	89-103 Actinoids	104 Rf (261) Rutherfording	105 Db (262) Dubnium	106 Sg (266) Seaborgium	107 Bh (264) Bohrium	108 (267) Hassiam	109 Mt (268) Meitneria	110 Ds (271) um Darmstadt	111 Rg (27: Inm Roentgi	2) (2	M2 Cn 185) rnicium	113 Nk (280) Nikoniam	114 Fl (289) Flerovium	115 Mc (289) Moscovii	(2	16 117 -v Ts 92) (294) morium Tennessino	118 Og (294) Oganesson
	1.	La (مد 10.1 14		Nd 1 144.2 (1	- _M S 45) 15	5m 0.4 fi		64 GJ 157.3 radolinium	65 Tb 158.9 Terbium	66 Dy 162.5 Dysprosiam	67 Ho 164. Holmis	9 16		69 Tm 68.9 vulium (70 96 173.1 Herbium	71 Lu 175.0 Lutetian	
	G	Ac 227) 23	Tk 1 32.0 2:		U 1 238.0 (2	Up F	°u 44) (:			97 Bk (247) erkelium	98 CF (251) Californium	99 Es (252 Einstein) (2:	љ 5 7) (101 Md 258) delevium	102 No (259) Nobelium	103 Lr (262) Lawrencium	
	f.	-bloc	k				The	value	in brac	kets	indicat	es H	le mas	s numb	per of	the l	ongest-live	d isoto

<u>Groups</u>

- Definition:
 - The 18 vertical columns of elements are called ______.
 - Groups 1-2 and 13-18 tells the number of _______.

Groups & Valence Electrons

Periodic table of the elements

1	2		3-12										13	1-	+ '	15	16	17	18	
1 H 1.0 Hydrogen		I							e)										2 He 4.0 Heliam
3 Li 6.9 Lithium	4 Be 9.0 Beryllium		An Symbol of element B C N 0 F No No F No No F No No											10 Ne 20.2 Neon						
11 Na 23.0 Sodium	12 Mg 24.3 Magnesium				Tra	ansit	ion	met	tal	S				13 Al 27.0 Aluminium	14 Si 28.1 Silica		15 P 31.0 ospkorus	16 S 32.1 Sulfur	17 Cl 35.5 Chlorin	18 Ar 39.9 L Argon
19 K 39.1 Potassiam	20 Ca 40.1 Calsina	21 Sc 45.0 Scandiam	22 Ti 47.9 Titanium	23 V 50.9 Vanadinm	24 Cr 52.0 Chromium	25 Mn 54.9 Manganese	26 Fe 55.1 Iron	. c. 8 58	3.9	28 Ni 58.7 Nickel	2 C 63 Cop	44 3.5	30 Zn 65.4 Zinc	31 Ga 69.7 Gallium	32 Ge 72.6 German		33 As 74.9 wsenic	34 Se 79.0 Selenium	35 Br 79.9 Bromin	36 Kr 83.8 Krypton
37 Rb 85.5 Rubidium	38 Sv 87.6 Strontium	39 Y 88.9 YHrium	40 Zr 91.2 Zirconium	41 Nb 92.9 Niobium	42 Mo 96.0 Molybdenum	43 Tc (98) Technetium	44 Ru 101.: Ruthen	f 104	2.9	46 Pd 106.4 Palladium	4 A 103 Sil	7.9	48 Cd 112.4 ndmium	49 In 114.8 Indiam	50 Sn 118.7 Tin		51 Sb 121.8 Intimony	52 Te 127.6 Telluriun	53 126.9 lodine	54 Xe 131.3 Xenon
55 Cs 132.9 Cesiam	56 Ba 137.3 Barinm	57-71 Lanthanoids	72 Hf 178.5 Hafrian	73 Ta 180.9 Tantalum	74 W 183.8 Tungsten	75 Re 186.2 Rhenium	76 0s 190.: Osmiu	2 192	2.2	78 P+ 195.1 Platinum	7 A 19: G	u. 7.1 2	80 Hg 200.6 sercarg	81 TI 204.4 Thallium	82 Pb 207. Lea	- 1 -	83 Bi 209.0 ismath	84 Po (210) Polonium		86 Rn (222) Radon
87 Fr (223) Francium	88 Ra (226) Radinm	89-103 Actinoids	104 Rf (261) Rutherfordiun	105 Db (262) Dubnium	106 Sg (266) Seaborgium	107 Bh (264) Bohrium	108 (261 Hassi	7) (24	09 A+ 68) nerium D	110 Ds. (271) Darmstadtium	11 R (23 Roenty	ig 72) (112 Cn (285) Dernicium	113 Nh (280) Nikonium	114 Fl (289 Flevovi		115 Mc (289) oscovium	116 Lv (292) Livermori	117 Ts. (294) am Tenness	
	13	La 1	Co 40.1 14	Pr 10.9 1	NJ 44.2 (1	P _m 5 (45) 15	62 5m 60.4 narium	63 Eu 152.0 Europium	64 64 157. Gadolir	.3 15	55 No 58.9 Bigm	66 Dy 162.5 Dysprosian	16	to 4.9 16	68 Er 57.3 bium	69 Tm 168.9 Thulinm	15	70 96 13.1 Whiam 1	71 La 175.0 -utetiam	
	(2	Ac 27) 2	Th 32.0 2		38.0 (2	Np 1 237) (2	94 Pu 244) Palium	95 Am (243) Americiam	96 Cm (247 Curio	7) (2-	17 8k 47) selium	98 CF (251) Californium	(2	52) (2	100 Fm 257) rmium	101 MJ (258) Nendelevia	(2	02 No 59) elium L	103 Lr (262) swrencium	

The value in brackets indicates the mass number of the longest-lived isotope

- Across any period in the d-block, the number of valence electrons remains the same at two.
- The only exceptions are group 6 and 11 (chromium/copper exceptions).
- In the s- and p-blocks, the number of valence electrons corresponds to the _____

Noble Gases

Elements in group 18 are known as the noble gases. They do not participate in any type of intramolecular bonding, as they have full outer shells.

Sub-Section: Periodic Table Trends

First Ionisation Energy

Definition: The first ionisation energy is the energy required to ______ one electron from an element in a gaseous state.

Definition

First Ionisation Energy Across a Period

The first ionisation energy **increases** across the period, as it becomes easier to gain electrons instead of losing them to obtain a **full outer shell**.

First Ionisation Energy Down a Group

First ionisation energy [increases]/[decreases] down the group as the valence electrons are located further from the nucleus, and thus, feel a weaker pull.

Sample Response: First Ionisation Energy

- As the effective nuclear charge of x is higher, it feels a **greater attraction** to the nucleus.
- Therefore, electrons are harder to remove from the atom.
- More energy is required to remove them from the atom.
- They have a greater first ionisation energy.

_		•	_		
•	חשכם	tor	Perso	יוב מי	JOTOC
_	vale	IUI	L GI 20	и Іан І	AD FE2

Effective Nuclear Charge/Core Charge

- Definition:
 - The effective nuclear charge is the attractive force 'felt' by the valence electrons.
 - First ionisation energy and other trends can be discussed as effective nuclear charge.
- Formulae:

 $Effective\ nuclear\ charge=No.\ of\ protons-No.\ of\ core\ electrons$

Metallic Character

The metallic character is the tendency of an element to lose electrons and form ______.

Non-Metallic Character

The non-metallic character is the tendency of an element to gain electrons and form ______.

Electronegativity

- Definition:
 - G Electronegativity is the ability of an atom to attract ______ towards itself.

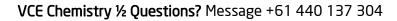
Atomic Radius

- Definition:
 - The atomic radius is the _____ of the atom or the distance between the centre of the nucleus to valence electrons.

Electronegativity and Atomic Radius Across a Period

- Electronegativity increases across the period as effective nuclear charge increases.
- As electronegativity increases, electrons are pulled closer to the nucleus, **decreasing the atomic** radius of the atom.

Properties Going Down a Group



Effective Nuclear Charge	Atomic Radius	<u>Electronegativity</u>				
Stays the same	Increases	Decreases				

Sample Response: Electronegativity

- As we go across a period, core charge increases, so electrons have a greater attraction to the nucleus.
- Furthermore, as we go up a group, the **atomic radius** decreases as we have fewer shells, so the attraction between the nucleus and electrons **increases**.
- Therefore, electronegativity increases.

Qu	nestion 3 (3 marks) Walkthrough.	
a.	Rank the following three atoms in terms of increasing atomic size. (1 mark)	
	Pb, Bi, Cs	
b.	Explain why this is the case. (2 marks)	
Sp	pace for Personal Notes	

Section B: Warm Up (14 Marks)

INSTRUCTION: 14 Marks. 9 Minutes Writing.

Question 4 (2 marks)

For the following elements, determine the number of protons, neutrons, and electrons present in the isotope.

- **a.** $^{16}_{8}0^{2-}$ (1 mark)
- **b.** $^{37}_{17}$ Cl (1 mark)

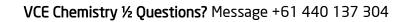
Question 5 (2 marks)

For each of the following elements, write out their Bohr electronic configuration.

a. Carbon (0.5 marks)

c. Potassium (0.5 marks)

b. Chlorine (0.5 marks)


d. Scandium (0.5 marks)

Que	estion 6 (3 marks)
Pro	vide the Schrodinger's electron configuration for each of the following elements:
a.	B (1 mark)
b.	Na (1 mark)
c.	Fe (1 mark)
	estion 7 (2 marks)
	te the condensed Schrodinger's electron configuration for each of the following elements:
a.	Ni (1 mark)
b.	Cu (1 mark)
Ç n:	ace for Personal Notes
) Spe	ace for Personal Notes

Qu	estion 8 (2 marks)				
For	For each of the following sets, rank them in terms of increasing first ionisation energy.				
a.	N, Be, O. (0.5 marks)				
b.	Mg, P, Al. (0.5 marks)				
c.	S, Cl, Si. (0.5 marks)				
d.	H, C, F. (0.5 marks)				

Question 9 (3 marks)			
a.	For the following elements, state their effective nuclear charges.		
	i.	Fluorine (0.5 marks)	
	ii.	Magnesium (0.5 marks)	
	iii.	Sulphur (0.5 marks)	
b.	Rar	nk these elements above in terms of decreasing atomic radius. (1.5 marks)	

Space for Personal Note

Section C: Ramping Up (12 Marks)

INSTRUCTION: 12 Marks. 9 Minutes Writing.

Question 10 (1 mark)

What is the Bohr electronic configuration for an atom of calcium?

- **A.** 2,8,10
- **B.** 2,8,6,4
- **C.** 2,8,2,8
- **D.** 2,8,8,2

Q	uestion 11 (5 marks)
Tl	ne Periodic Table is systemically designed to classify elements.
a.	Explain why there are two elements in the first period, hydrogen and helium. (2 marks)
b.	Helium is placed into group 8, but by normal conventions it should be in group 2. Explain this observation. (2 marks)

VCE Chemistry ½ Questions? Message +61 440 137 304

c.	State the Octet Rule. (1 mark)		
Qu	nestion 12 (6 marks)		
	r the following, choose which element would have a lower first ionisation energy, make sure to include effective clear charges.		
a.	Sodium and Chlorine. (3 marks)		
b.	Oxygen and Sulphur. (3 marks)		
Sp	Space for Personal Notes		
H			

Section D: Getting Trickier I (12 Marks)

INSTRUCTION: 12 Marks. 10 Minutes Writing.

Question 13 (7 marks)		
Orbitals and subshells are important to our understanding of atom behaviour, particularly looking at electrons.		
a. What specifically occurs when an electron is excited past the final energy level that exists for an atom? (1 mark)		
b. State the composition of the 3 rd shell of an atom. (1 mark)		
c. Explain why the exact location of an electron inside an atom is not known. (2 marks)		
d. Write the Schrödinger electronic configuration for an atom of Chromium. (1 mark)		
e. Explain your reasoning behind the configuration you wrote in part d. (2 marks)		
Space for Personal Notes		

Section E: Getting Trickier II (12 Marks)

INSTRUCTION: 12 Marks. 11 Minutes Writing.

Question 15 (1 mark)

What is the Schrödinger electronic configuration for an atom of neon?

- **A.** $1s^2 2s^2 2p^5$
- **B.** $1s^22s^22p^6$
- C. $1s^22s^22p^63s^2$
- **D.** $1s^22s^22p^53s^1$

Question 16 (11 marks)

A chemist wishes to create charged versions of certain elements such as lithium. To do this, the chemist creates a high-energy machine that can remove electrons from the atom.

a. What is a charged element referred to? (1 mark)

b. How many electrons must be removed to form the lithium ion? (1 mark)

c. Explain what is meant by first ionisation energy, and why some atoms have a higher first ionisation energy than others. (2 marks)

d.	Would boron or oxygen be expected to have a higher first ionisation energy? Why? (2 marks)
e.	During the same experiment, the chemist realises that the charge also plays a role in how much energy it takes to remove electrons from an atom. Explain what core charge is, and how it can be calculated. (3 marks)
f.	What is the effective nuclear charge of boron? (1 mark)
g.	Arrange the following atoms in order of lowest to highest core charge: Fe, Ti, Zn. (1 mark)
	Let's take a BREAK!
Sp	ace for Personal Notes

Section F: VCAA-Level Questions I (11 Marks)

INSTRUCTION: 11 Marks. 0.5 Minutes Reading. 10 Minutes Writing.

u	uestion 17 (11 marks)	
	Describe how elements are arranged in the periodic table based on their electronic configurations. (2 ma	rks
	How does atomic radius change, when we go:	
	i. Across a period. (1 mark)	
	Across a period. (1 mark)	
	ii. Down a group. (1 mark)	
	Explain how electronegativity is related to the effective nuclear charge. (2 marks)	

VCE Chemistry ½ Questions? Message +61 440 137 304

d.	Hence, compare the electronegativities of Carbon and Fluorine. (3 marks)
e.	Why are group 1 metals, the ones with the lowest first ionisation energies in their respective periods? (2 marks)
Sp	pace for Personal Notes

Section G: Multiple Choice Questions (10 Marks)

INSTRUCTION: 10 Marks. 10 Minutes Writing.

Question 18 (1 mark)

Which one of the following aspects determines the light emitted from an electron descending to its ground state?

- **A.** Whether the atom is a cation or an anion.
- **B.** The shell of the current electron.
- **C.** The atomic number of the atom.
- **D.** Energy difference between energy levels.

Question 19 (1 mark)

The energy difference between the shells n = 5 and n = 3 is greater than the energy difference between n = 5 and n = 2. Is this statement true or false?

- A. True
- B. False


Question 20 (1 mark)

Which of the following statements about atomic models is correct?

- **A.** Schrödinger's model explains why the 4s subshell is filled before the 3d subshell.
- **B.** Bohr's model explains why each shell can only fill $2n^2$ electrons.
- **C.** Rutherford's model explains that electrons behave like light waves.
- **D.** Both Bohr and Rutherford suggested the idea that electrons can inhabit discrete energy levels.

What block does the element Fe belong to?

- A. S-block
- **B.** P-block
- C. D-block
- **D.** F-block

Question 22 (1 mark)

Why does the second period of the periodic table have 8 elements?

- **A.** It contains only *s* and *p* orbitals.
- **B.** It includes, s, p, and d orbitals.
- C. It contains 8 valence electrons.
- **D.** It follows the Octet Rule.

Question 23 (1 mark)

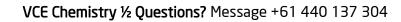
Which of the following elements has the highest first ionisation energy?

- A. Sodium
- B. Silicon
- C. Chlorine
- D. Sulphur

What is the term for the energy required to remove the outermost electron from an atom?

- A. Atomic Radius
- **B.** Electronegativity
- C. First ionisation Energy
- D. Electron Affinity

Question 25 (1 mark)


Noble gases have the highest first ionisation energies because:

- **A.** They have low atomic numbers.
- **B.** They have incomplete valence shells.
- C. They are in the p-block.
- **D.** They are the most stable group.

Question 26 (1 mark)

What is the effective nuclear charge experienced by Phosphorus?

- **A.** +3
- **B.** +5
- **C.** +6
- **D.** +7

Question 27 (1 mark)		
As you go across a period in the periodic table, the atomic radius:		
A. Increases.		
B. Decreases.		
C. Remains constant.		
D. Varies based on their isotope.		

Space for Personal Notes	

Section H: VCAA-Level Questions II (13 Marks)

INSTRUCTION: 13 Marks. 0.5 Minutes Reading. 12 Minutes Writing.

Question 28 (7 marks)					
Consider the Schrödinger and Bohr models of the atom.					
a.	Compare the two models, highlighting their main differences. (3 marks)				
b.	Explain what the Octet rule is. (1 mark)				
c.	Draw the shell model diagram for an atom of Argon. (1 mark)				
•	Draw the shell model diagram for an atom of ringom (1 mark)				

VCE Chemistry ½ Questions? Message +61 440 137 304

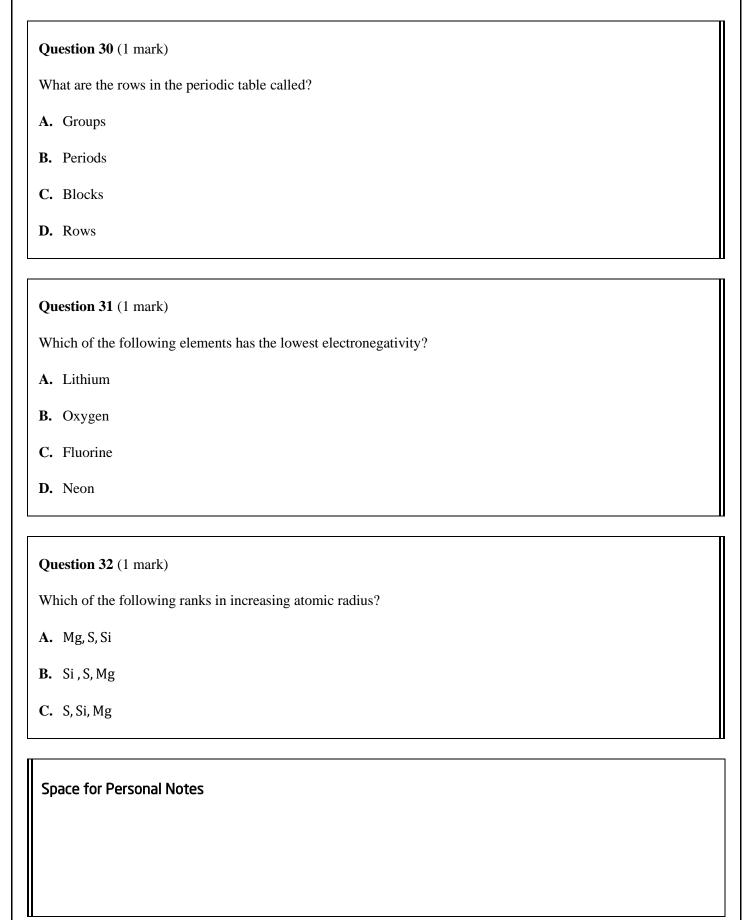
d.	Hence, what can be said about the Argon atom in relation to the Octet rule? (1 mark)		
e.			
Question 29 (6 marks)			
Co	nsider the emission spectrum that is observed with every element.		
a.	Are these emission spectra unique for each element? Explain. (2 marks)		
b.	What aspect of the Bohr model of the atom do emission spectra prove? (2 marks)		
c.	According to the Bohr model, as the shell number increases for an atom, what else also increases? (1 mark)		
d.	Suggest a way that we can observe or verify that emission spectra between Hydrogen and Helium will be unique. (1 mark)		

Section I: Summary

What have we learnt today?

w

TIPS


- \blacktriangleright Use the s, p, d, and f blocks in the periodic table to write Schrodinger's Electronic Configurations.
- The most electronegative element is on the top-right of the periodic table, and most trends are similar to that.

Pitfalls

CONTOUREDUCATION

Section J: Extension Questions (29 Marks)

Qı	Question 33 (7 marks)					
Ni	Nitrogen is the element that comprises the majority of Earth's atmosphere.					
a.	Nitrogen gas naturally exists as N ₂ .					
	i.	Is this considered an element? Explain. (2 marks)				
	ii.	Can a compound be considered a molecule but not an element? Justify your answer by providing an example. (2 marks)				
	·					
b.	b. Suggest a reason as to why nitrogen cannot be found naturally as N. (1 mark)					
c.		plain why the nucleus of atoms cannot change, or why we can't just turn an element into another element. marks)				
Sp	Space for Personal Notes					

Question 34 (7 marks)				
Leo is exploring some of the basic properties of the periodic table, focusing on the arrangement of elements within the table.				
a.	What is the "D block?" Explain with reference to an example. (2 marks)			
b.	Provide an example of an "S block" element. (1 mark)			
c.	Leo wishes to understand why some atoms are stable in their pure state, whereas others are unstable in their pure state. To do this, he compares Neon with fluorine. With reference to these two atoms, explain this finding. (3 marks)			
d.	What group are noble gases found in? (1 mark)			
Sp	Space for Personal Notes			

Question 35 (3 marks)			
ola	etronegativity is a key factor to consider for chemists when formulating new compounds to establish the arity of said compounds. Explain what is meant by electronegativity. Refer to factors that can determine tronegativity, alongside the link between electronegativity and atomic radius.		
u	estion 36 (9 marks)		
	nvi wants to annotate her VCE chemistry period table, to be the star pupil in her class. To do this, she wishes ine several trends and key elements on her periodic table.		
	the several trends and key elements on her periodic tuble.		
	Saanvi first highlights the most electronegative atom on her periodic table. What would this be, and why? (2 marks)		
	Saanvi first highlights the most electronegative atom on her periodic table. What would this be, and why?		
	Saanvi first highlights the most electronegative atom on her periodic table. What would this be, and why?		
	Saanvi first highlights the most electronegative atom on her periodic table. What would this be, and why?		
	Saanvi first highlights the most electronegative atom on her periodic table. What would this be, and why? (2 marks) Next, Saanvi labels each row. However, she is unsure of whether these are called groups or periods. What		
•	Saanvi first highlights the most electronegative atom on her periodic table. What would this be, and why? (2 marks) Next, Saanvi labels each row. However, she is unsure of whether these are called groups or periods. What		
•	Saanvi first highlights the most electronegative atom on her periodic table. What would this be, and why? (2 marks) Next, Saanvi labels each row. However, she is unsure of whether these are called groups or periods. What		
•	Saanvi first highlights the most electronegative atom on her periodic table. What would this be, and why? (2 marks) Next, Saanvi labels each row. However, she is unsure of whether these are called groups or periods. What		

VCE Chemistry ½ Questions? Message +61 440 137 304

c.	Saanvi indicates that the first ionisation energy decreases going from left to right. Is this correct? Why or why not? (2 marks)	
d.	Would boron or aluminium be expected to have a higher electronegativity? Explain why with reference to relevant trends. (2 marks)	
е.	Rank each of the following atoms in terms of increasing atomic radius: Al, Cl, Si. (1 mark)	
Space for Personal Notes		

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Chemistry ½

Free 1-on-1 Support

Be Sure to Make The Most of These (Free) Services!

- Experienced Contour tutors (45+ raw scores, 99+ ATARs).
- For fully enrolled Contour students with up-to-date fees.
- After school weekdays and all-day weekends.

1-on-1 Video Consults	<u>Text-Based Support</u>
 Book via bit.ly/contour-chemistry-consult- 2025 (or QR code below). One active booking at a time (must attend before booking the next). 	 Message <u>+61 440 137 304</u> with questions. Save the contact as "Contour Chemistry".

Booking Link for Consults
bit.ly/contour-chemistry-consult-2025

Number for Text-Based Support +61 440 137 304

