CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Biology ¾ Nucleic Acids & the Structure of Genes [1.2]

Workbook

Outline:

Nucleic Acids

Pg 2-15

- Nucleic Acids as Information Molecules
- Nucleotides
- Condensation Polymerisation
- NA 🔷
- RNA

Genes and the Genetic Code

Pg 16-23

Study Design Key Knowledge:

Study Design: The relationship between Nucleic Acids and Proteins

Nucleic acids as information molecules that encode instructions for the synthesis of proteins: the structure of DNA, the three main forms of RNA (mRNA, rRNA and tRNA), and a comparison of their respective nucleotides.

The genetic code as a universal triplet code that is degenerate.

The structure of genes: exons, introns, and promoter and operator regions.

https://www.vcaa.vic.edu.au/Documents/vce/biology/2022BiologySD.docx

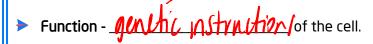
Section A: Nucleic Acids

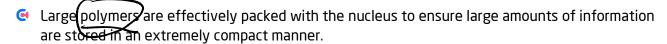
Sub-Section: Nucleic Acids as Information Molecules

How do cells know what to do, and when to do it?

Discussion: The Purpose of Nucleic Acids ONA gunchic Instruction

SNULLEUS - brain " THE CENTRAL DOGMA




INSTRUCTIONS

FINAL PROPULT

Nucleic Acids

1 inhented

- They determine how a cell will develop as they encode for the production of proteins that are responsible for specific functions in a cell.
- What is a polymer

submit alled

Types of nucleic acids:

@ DNA - <u>Deoxymbonudeic Acid</u>

@ RNA - RIDDNWLUCAND

nDNDMU!

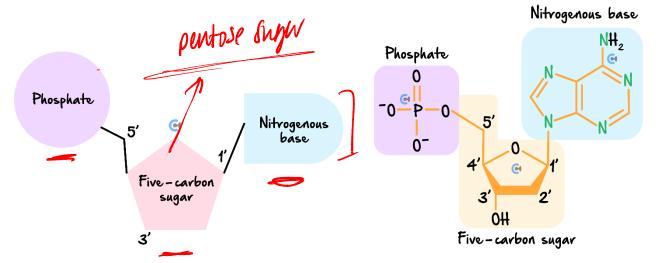
Analogy: A Blueprint for the Cell

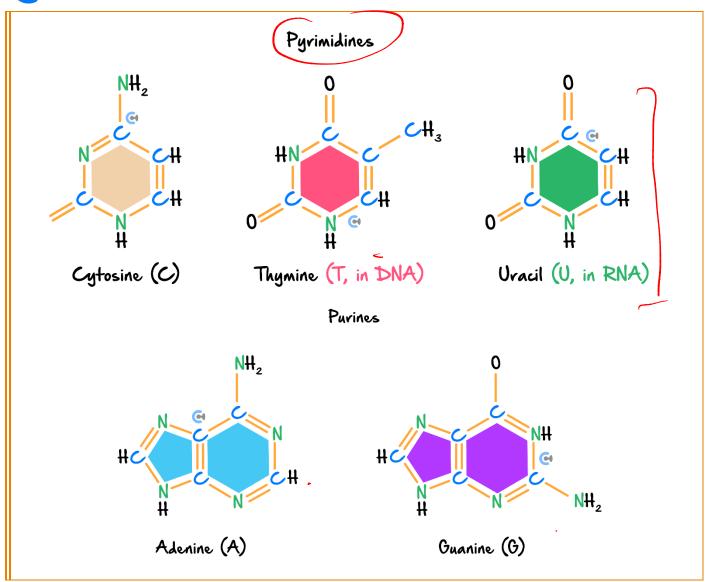
Sub-Section: Nucleotides

What are the monomers that make up a molecule of nucleic acid?

Exploration: Nucleotides

Nucleotides are the monomers that make up nucleic acids.



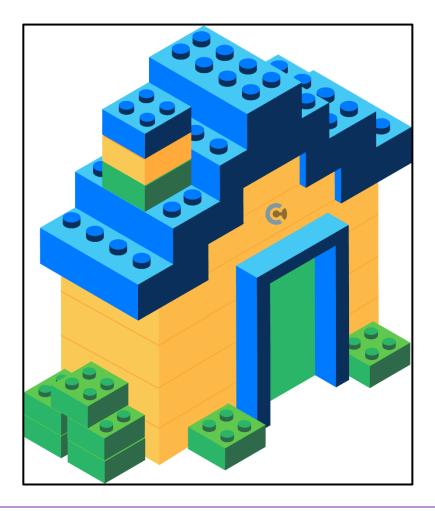

Figure 1 (a) The basic structure of a nucleotide and (b) the chemical structure of a DNA nucleotide.

- Phosphate group.
- 5 carbon sugar.
- Nitrogenous bases.

- € 5 types of nitrogenous bases Adenine, Thymine, Cytosine, Guanine, or Uracil.
- Purines = Adenine and Guanine.
- Pyrimidines = Thymine, Uracil, and Cytosine.

ONTOUREDUCATION

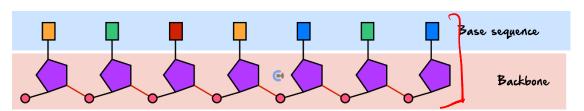
Discussion: If DNA and RNA are both made up of nucleotides, why are they different?

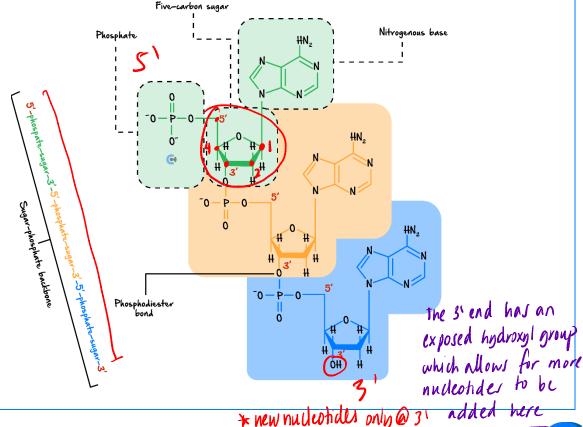

on try putting things in "categories" or make our

Analogy: Building Lego!

- The bricks will all be put together the same way, and will all have those little circles to help join them together.
- However, depending on slight differences in the bricks, and the WAY we arrange them, they will have different final outcomes!

<u>Sub-Section</u>: Condensation Polymerisation



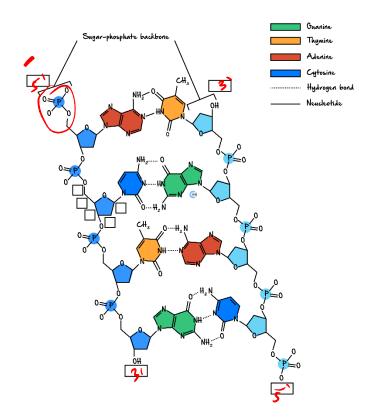

How can we put those bricks together?

Condensation Polymerisation

- Reaction between nucleotides that allows the nucleic acid chain to build up.
 - © Condensation producing H20 AV a byproduct
 - e Polymerisation making a polymer (joining the monome)
- The nucleotides are linked together by strong <u>(NMU)</u> bonds specifically, these are known as <u>phosphodulle</u>.

* NEW TILL COTTOCS ONLY TO 3

Discussion: What do you notice about the way the nucleotides are joined together?


- What forms the backbone of the DNA?
 - G Sugar Phosphate Backbone
- Numbering of the Carbons? Why is this important?
- I connects the sugar to nitrogenous base

 3 connects the sugar to phosphate of MOSACENT nucleotide

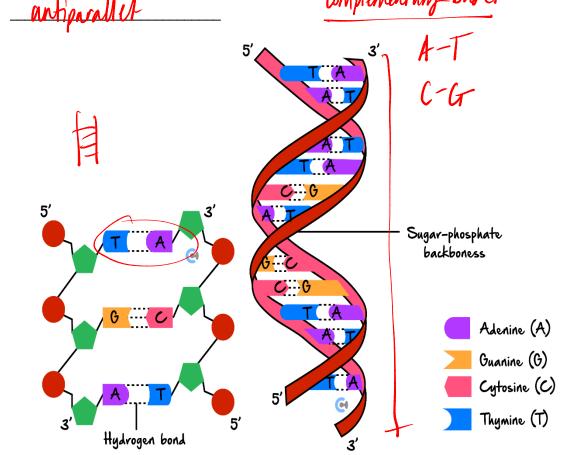
 5 connects the sugar to the phosphate within the same

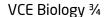
 nucleotide!

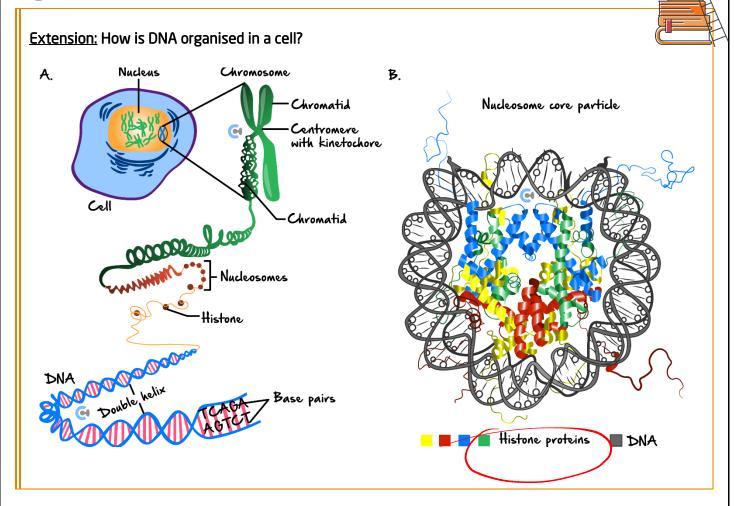
Annotate this diagram of a DNA molecule!

TIP: Phosphate sounds like Phosphate; hence it is at the 5'!

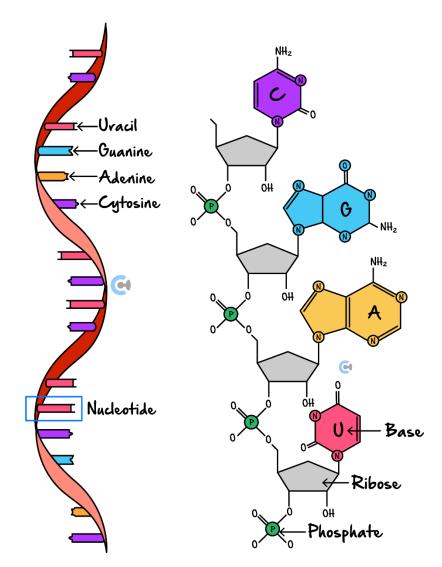
Space for Personal Notes	


Sub-Section: DNA


Exploration: DNA


- Found in the nucleus of cells humans have DNA packaged as 46 chromosomes which contain **genes**.
- To be able to accommodate large amounts of DNA, these chromosomes are long DNA strands tightly coiled around "histone" proteins.
 - Deoxymbonuleic Acid
 - G Deoxpribose Sugar
 - Mitrogenous Bases Adunal Thomas Cutarine Cytative
- Double-stranded Double Helix Structure. Avrangument

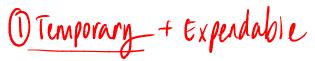
> Joined together by complementary base pairing - hydrogen bonding between complementary base pairing - hydrogen bonding between



Sub-Section: RNA

RNA

- Definition
- Ribonucleic acid has different forms including MRNA / HRNA / FRNA ...
 - Sugar Sugar
 - Phosphate Group
 - Mitrogenous Bases Adune Vaul, Cytosino, Curanino
- Single-stranded
 - Multiple forms each with different functionalities.

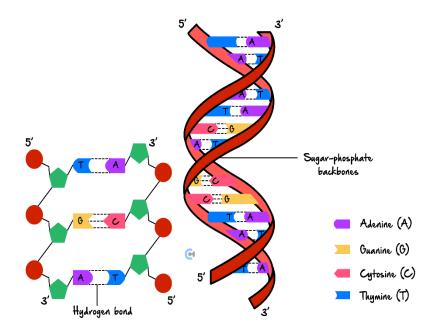

CONTOUREDUCATION

RNA <u>Function</u> Representation		
messenge/ RNA (mRNA)	carries a copy of genetic material from the nucleus (ON) to the ubosome	Bases
muff RNA (tRNA)	carries spendic amino awids in their wirect order by matching with the ment, to the ribason for protein synthesis	Hydrogen bonds creates some areas of base pairing, causing folding in the strands
<u>ribosomal</u> RNA (rRNA)	makes up the structure and function of the vibosome So which makes proture	

Discussion: What do you think is the purpose of mRNA?

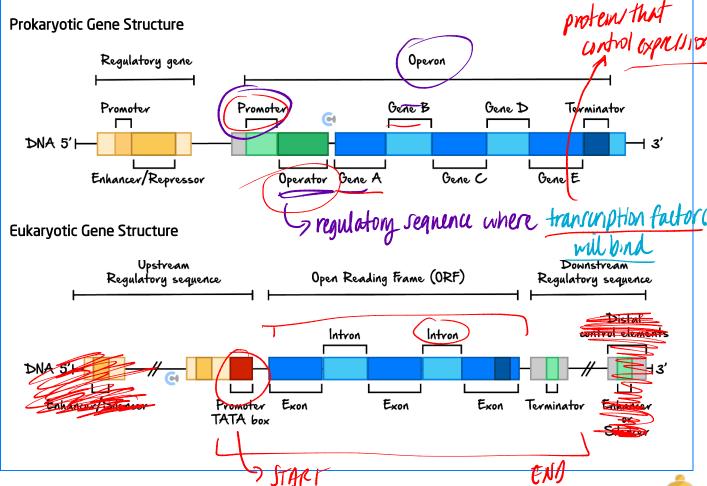
& Conaphal

Discussion: What similarities and differences can you think of between DNA and RNA?


DNA	Similarities	RNA
Double Stranded Deoxyribose	- both have information about proteri	Single Standed ribose
·thymine Larger! Single more permanent Inherited nucleus	- nndeotide) . pnosphate . ACt SP backbone - CP— phosphodiesterbond	ovravil Smaller multiple forms temporary made by you nucleus entosol

Key Takeaways

- Nucleic acids (DNA and RNA) encode instructions for protein synthesis.
- Modern DNA is a double-stranded helix composed of nucleotides containing a deoxyribose sugar, phosphate group, and nitrogenous bases (adenine, thymine, cytosine, guanine).
- ✓ DNA strands are aligned anti-parallel.
- Complementary base pairing occurs in DNA with adenine pairing with thymine (A-T) and cytosine pairing with guanine (C-G).
- ☑ RNA exists in three main forms mRNA (messenger RNA), rRNA (ribosomal RNA), and tRNA (transfer RNA) each with distinct functions in protein synthesis.
- MRNA carries the genetic code transcribed from DNA to the ribosomes for translation.
- rRNA forms the structural and functional core of ribosomes, where proteins are synthesised.
- ▼ tRNA transports specific amino acids to the ribosome during protein synthesis, matching them to the mRNA codons via its anticodon.
- RNA is single-stranded, contains the sugar ribose, and uses uracil (U) instead of thymine (T).
- A nucleotide contains a phosphate group, a 5 carbon sugar, and a nitrogenous base
- DNA nucleotides include deoxyribose, whereas RNA nucleotides include ribose; both share phosphate groups but differ in one nitrogenous base (U in RNA, T in DNA).



Section B: Genes and the Genetic Code

Genes

- We know that information in the cell is encoded in DNA, and this DNA is wrapped around proteins to make chromosomes.
 - In each chromosome, we can break them down to "genes" A Section of INA That Loa
 - We have thousands of genes that correspond to our thousands of

REMINDER: Genes are the instructions, and proteins are the final product! Compare it to the blueprint (DNA) and the building produced (protein).

NOTE: I am describing these as "components" but please be aware that this is still just a strand of DNA!

Characteristics of the Genet	triplet - DNA Codon - many anticoden - HNA Codon - many anticoden - HNA
<u>Universal</u>	ALL LIVING ORGANISMI HAVE ONA
Triplet	3 nuleotides/bases node for lamino acid 64 combination -> 20 anin
<u>Degenerate</u>	multiple codon code for the same amino auid

Second Letter

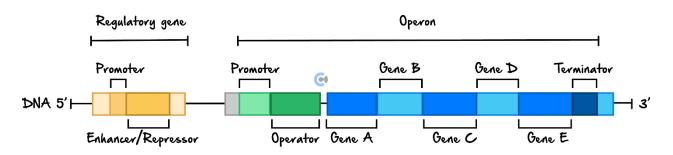
	U	С	A	G	
U	Phe $\left\{egin{array}{c} UUU \ UUC \end{array} ight.$ Leu $\left\{egin{array}{c} UUA \ UUG \end{array} ight.$	Ser (UCU UCC UCA UCG	Tyr(UAU UAC UAA Stop UAG Stop	Cys{UGU UGC UGA Stop UGG Trp	U C A G
С	Leu (CUU CUC CUA CUG	Pro (CCU CCC CCA CCG	$His egin{cases} CAU \\ CAC $	Arg CGC CGA CGG	U C A G
A	Ile (AUU AUC AUA	Thr ACC ACA ACG	$ ext{Asn}_{ ext{AAC}}^{ ext{AAU}} \ ext{Lys}_{ ext{AAA}}^{ ext{AAA}} \ ext{AAG}$	$Ser^{egin{smallmatrix} AGU \ AGC \ \end{bmatrix}}$ $Arg^{egin{smallmatrix} AGA \ AGG \ \end{bmatrix}}$	U C A G
<u>G</u>	Val GUC GUA GUG	Ala GCC GCA GCG	$Asp^{egin{smallmatrix} GAU \ GAC \ \end{bmatrix}}$ $Glu^{egin{smallmatrix} GAA \ GAG \ \end{bmatrix}}$	GGU GGC GGA GGG	U C A G

TIP: In the exam, these features will almost certainly be tested, so make sure to memorise their definitions.

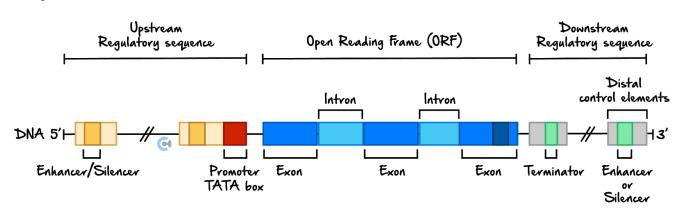
Space for Personal Notes

0449645004

1) Feedback KII 1g: aaliyan_a23 2) Envolment email


nello @ contowednention.com.an

email- adligar a contour



Key Takeaways

Prokaryotic Gene Structure

Eukaryotic Gene Structure

Component	<u>Definition</u>
Exons	Regions of DNA that are expressed as a protein.
Introns	Regions of DNA that aren't expressed in the final protein.
Promoter	A sequence of DNA that is responsible for initiating gene expression.
Operator	Binding site for a transcription factor (protein that regulates gene expression).
Terminator	Where transcription of the gene ends.

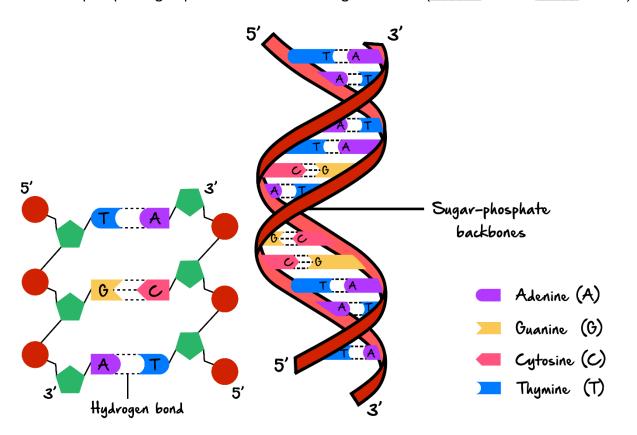
Contour Check

<u>Learning Objective</u>: [1.2.1] - Identify and compare the characteristic features of the structures of nucleic acids and their monomers, including DNA, mRNA, tRNA and rRNA, including base pairing

Study Design

Nucleic acids as information molecules that encode instructions for the synthesis of proteins: the structure of DNA, the three main forms of RNA (mRNA, rRNA and tRNA) and a comparison of their respective nucleotides.

Key Takeaways
Nucleic acids (DNA and RNA) encode instructions for
DNA is a helix composed of nucleotides containing a deoxyribose sugar, phosphate group, and nitrogenous bases ().
Complementary base pairing occurs in DNA with adenine pairing with and cytosine pairing with
RNA exists in three main forms–mRNA (RNA), rRNA (RNA), and tRNA (RNA) – each with distinct functions in protein synthesis.
mRNA transcribed from DNA to the ribosomes for translation.
rRNA forms the, where proteins are synthesised.
tRNA transports, matching them to the mRNA codons via its
Unlike DNA, RNA is, contains the sugar, and uses uracil (U) instead of thymine (T).


<u>Learning Objective</u>: [1.1.2] – Identify and describe the structure of a nucleotide in DNA and RNA

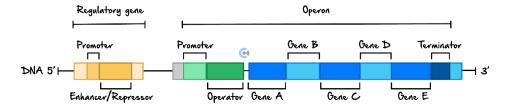
Study Design

Nucleic acids as information molecules that encode instructions for the synthesis of proteins: the structure of DNA, the three main forms of RNA (mRNA, rRNA, and tRNA), and a comparison of their respective nucleotides.

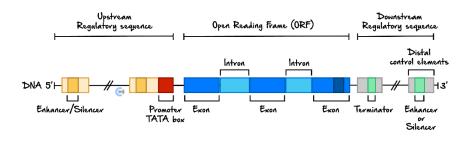
Key Takeaways

- A nucleotide contains a ______, and _____, and _____, label these on the diagram below!
- DNA nucleotides include ______, whereas RNA nucleotides include ______; both share phosphate groups but differ in one nitrogenous base (______ in RNA, _____ in DNA).

<u>Learning Objective</u>: [1.2.3] - Define the key components of a gene, including a comparison between the structure of genes in eukaryotes and prokaryotes


Study Design

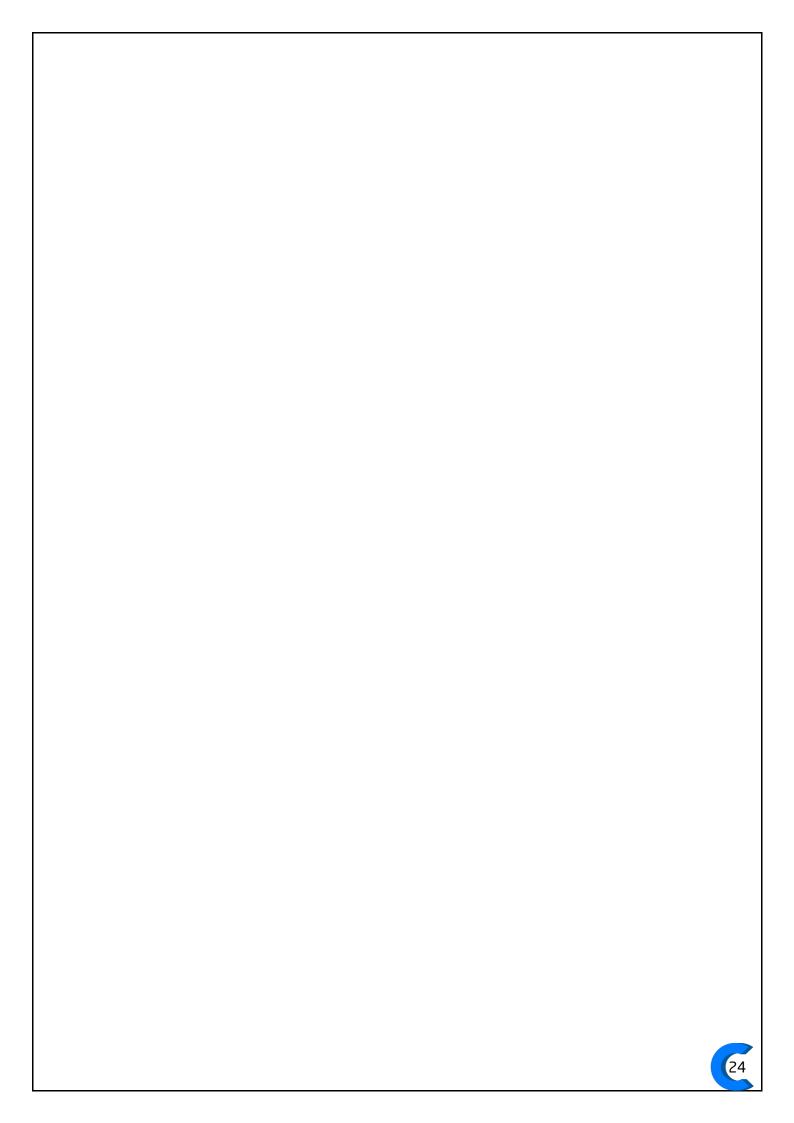
The structure of genes: exons, introns and promoter and operator regions.


Key Takeaways

<u>Component</u>	<u>Definition</u>
Exons •	CODING PEALONS Sequence of DNA that will be expressed in final protein
E Introns	NON COOING REGION sequence of ONA that WONT be CXP.
Promoter ^	START/STOP Sequence ON/OFF SWITCH SEQUENCE OF ONA where transmitted of a gene begins
Operator	
Terminator .	sequence of ONA where transcription STOPS

Prokaryotic Gene Structure

Eukaryotic Gene Structure


<u>Learning Objective</u>: [1.2.4] - Identify and practically apply the characteristics of the genetic code - universal, unambiguous, degenerate, triplet - to real-life examples

Study Design

The genetic code as a universal triplet code that is degenerate.

Key Takeaways

Component	<u>Definition</u>
Exons	
Introns	
Promoter	
Operator	
Terminator	

