

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Biology ¾ Cell Basics [1.1]

Workbook

<u>0</u>	<u>utline</u> :
<u>Tips for Success in VCE Biology</u> Pg 0	Cells Cell Theory Types of Cells The Plasma Membrane Phospholipids Movement Across the Plasma Membrane Bulk Transport Organelles Cell Division Apoptosis Biology and Shapes

Section A: Tips for Success in VCE Biology

Key Takeaways: Top Tips!

- Break down chunky bits of content into manageable pieces we will help with this!
- ☑ Be active in your learning don't spend large parts of the year not studying!
- Keep testing your knowledge.
- Ask questions when you are unsure.
- ☑ Be sure to keep the bigger picture in mind answering questions!
- Keep track of your mistakes with an error log.
- ✓ Try out creative ways of learning and remembering the content.
- ☑ Teaching friends!
- Creating mind maps and your own diagrams!
- ☑ Try to make your own diagrams and explanations!

Discussion: What are some things you can do from the start to help you succeed?

NOTE: A lot of these tips can be applied to other subjects as well, and likewise study advice for subjects can be applied to Bio!

Section B: Cells

-) basic unit of life **Exploration**: What are cells?

Sub-Section: Cell Theory

Cell Theory

- Definition
- The cell is the smallest unit of life (nothing smaller than them can be considered life).
- All cells are generated from previous cells they cannot spontaneously generate.
- All living things arise from cells.

<u>Function</u>	<u>Description</u>
M <u>ovement</u>	
22 Respiration	producing everyn from larger biomolecules ATP
s_ensitivity	
G_rowka	
Reproduction	
E Kureton > netting rid	of toxic waste products/materials
E quilibrium Homeost	alij
N_WATON	

Sub-Section: Types of Cells

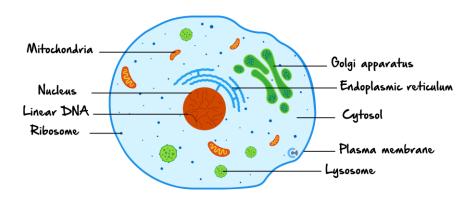
Prokaryotic v/s Eukaryotic Cells

In general, cells have a membrane that delineates their internal environment filled with fluid (cytosol), and genetic information in the form of DNA.

e	However, we can divide cells into 2 types – eukaryotic cells and prokaryotic cells.	

Eukaryotic cells have a nucleus and other membrane bound

Prokaryotic cells do NOT have a nucleus and other membrane bound

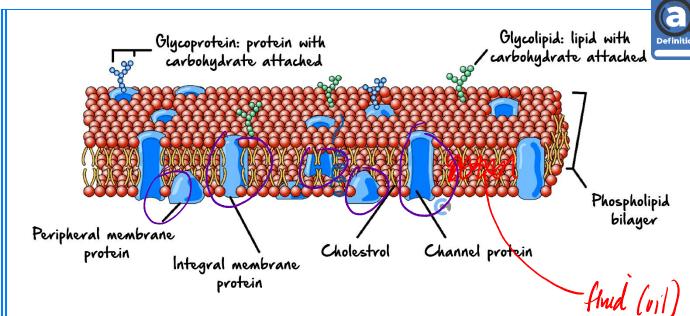

	Eukaryotes	Prokaryotes
Membrane-bound organelles	Present	Absent (except vesicles)
DNA organisation	More than one linear strand of DNA packaged in a chromosome in a nucleus	One circular chromosome and additional plasmids
Organism nature	Can be unicellular or multicellular	Unicellular
Size	Larger (-10 - $100~\mu m$)	Smaller (-0.1 -5 μm)
Method of cell replication	Mitosis and meiosis	Binary fission

Prokaryotic

Eukaryotic

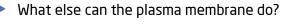
NOTE: Understanding the main functional difference between prokaryotic and eukaryotic cells is important, as it can be indirectly in later topics such as 1.3 Gene Expression and the trp operon!

REMINDER: Don't forget!



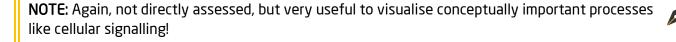
This content won't directly be assessed in Units 3 & 4, but is key to understanding it! Don't worry about grasping everything perfectly, focus on the bigger picture!

Sub-Section: The Plasma Membrane



Functions of the Plasma Membrane

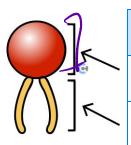
- Cellular Integrity: keep everythery together
- > Selective Permeability: Choose what enfers and exch



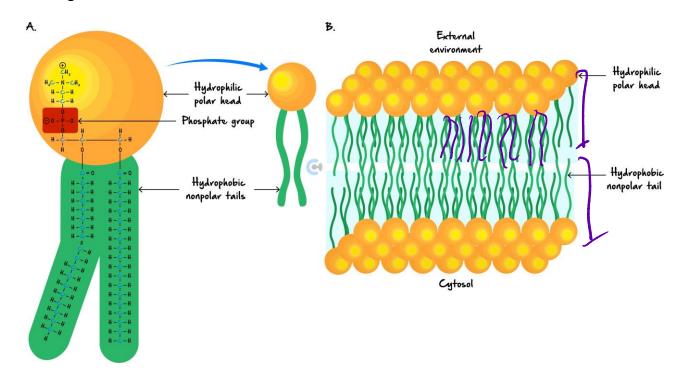
-chooses

Components of the Plasma Membrane

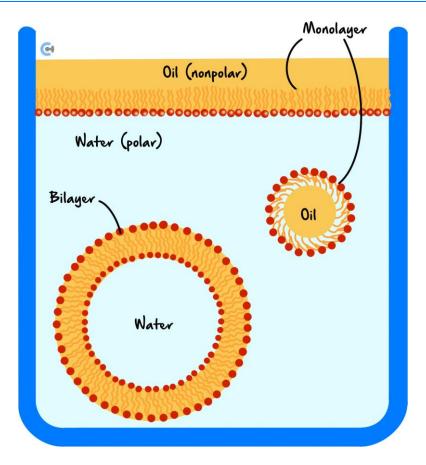
- 'Fluid mosaic model': Everything is mashed together (______) and moves around randomly throughout the membrane. (______)
- ➤ The components are held together by ______.


Sub-Section: Phospholipids

Phospholipids



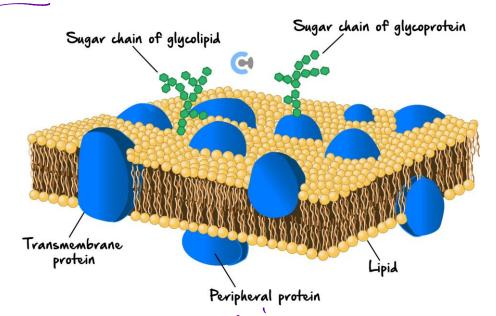
- Purpose: Key component of the plasma membrane, and contributes to ______.
- Structure:



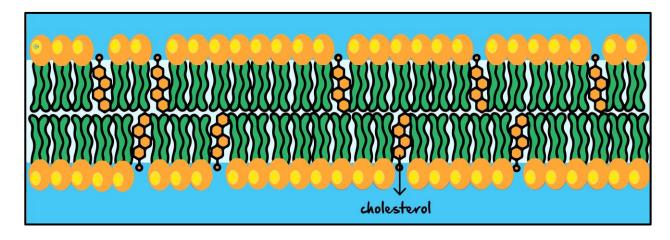
<u>Component</u>	<u>Chemical Nature</u>	<u>Properties</u>
phosphate	polar	hydrophillic
fatty and	non polar	hodrophobic
taw		

Arrangement:

CONTOUREDUCATION


Naturally forms this orientation due to <u>AANCONS</u> intracellular and extracellular environment; the tails will clump together to minimise contact with water.

CONTOUREDUCATION

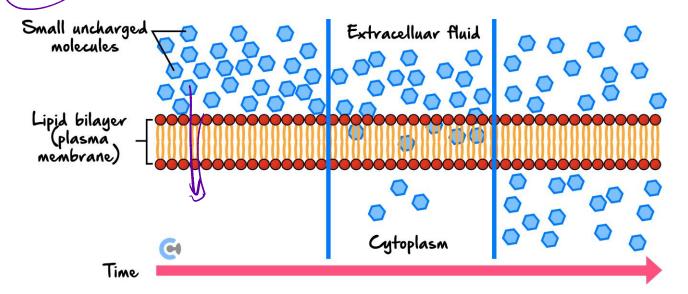

Everything Else

- Proteins Provide alternative pathways for _________ substances to cross the plasma membrane.
 - Channel proteins: Act as a tunnel through which substances can move.
 - **Carrier proteins:** Change shape to let a substance through.

- Glycoproteins & Glycolipids What Signally
- Maintains cellular integrity by acting as a 'spacer' between phospholipids to control membrane fluidity.
 - At high temperatures, cholesterol ______ membrane fluidity.
 - At low temperatures, cholesterol ______ membrane fluidity.

Sub-Section: Movement Across the Plasma Membrane

NOTE: 'Passive' transport means that this is an energy-requiring process!

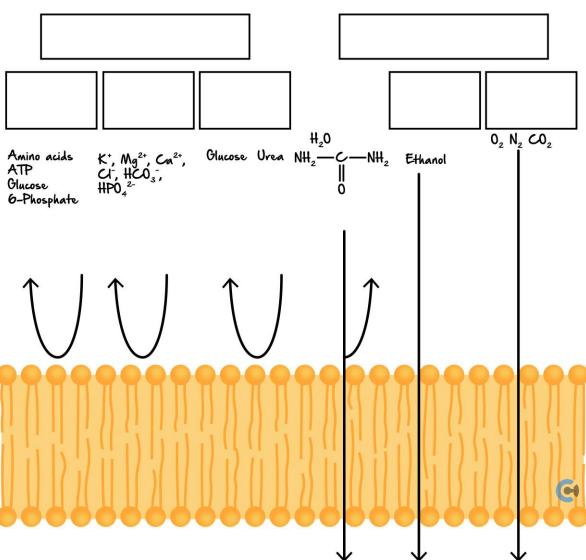

Diffusion

This is the movement of solutes from an area of high concentration to an area of low concentration.

• Substances will want to move across a membrane **DOWN** their concentration gradient.

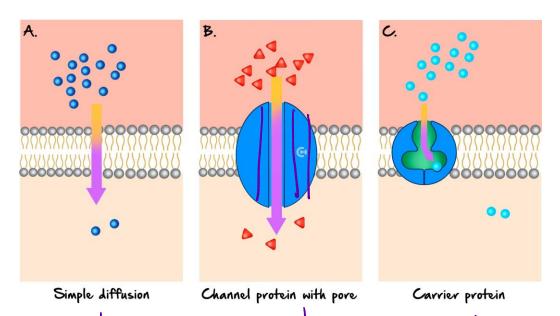
Simple diffusion is when a substance can directly move across the membrane unassisted.

REMINDER: Mixture Terminology



- Solute = Substance that is dissolved.
- Solvent = Liquid in which a solute dissolves.
- Solution = Liquid mixture of the solute in the solvent.
- Net movement is the overall direction where movement has occurred. It should be noted that movement will occur in both directions across the membrane.

<u>Exploration</u>: What are the properties of substances that can move across the membrane?

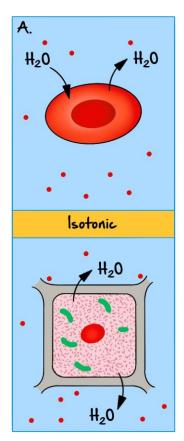


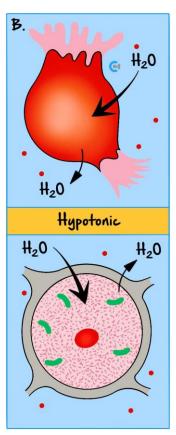
Facilitated Diffusion

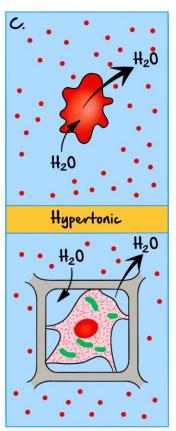
- Substances are not able to directly move across the membrane, however, move across the membrane anyway due to the action of carrier and channel proteins.
 - Still moving from an area of high concentration to an area of low concentration (hence, going down their concentration gradient).
- Channel proteins have a water-filled pore for hydrophilic substances to move across.
- Carrier proteins are specific to a substance, and when it binds, this initiates a change in shape allowing the movement across the membrane.

Space for Personal Notes

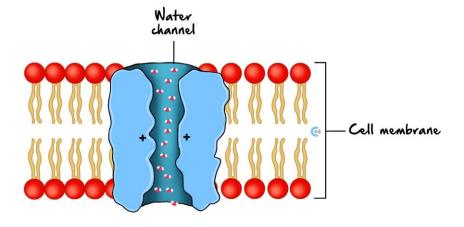
= hydropholoic


nydiopullic

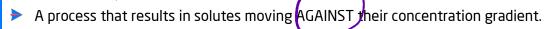


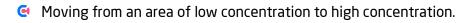

Osmosis

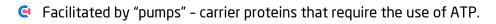
- This is the net movement of water across a semi-permeable membrane from an area of low solute concentration to an area of high solute concentration.
 - So, instead of the solute moving it's water!
 - l like to think of it like the "water concentration" although this is a bit flawed in actual terms.
- Isotonic solutions Equal solute concentration to the cell where does the water move?
- Hypotonic solutions Lower solute concentration to the cell where does the water move?
- Hypertonic solutions Higher solute concentration to the cell where does the water move?
 - What happens here can differ for plant and animal cells, how?

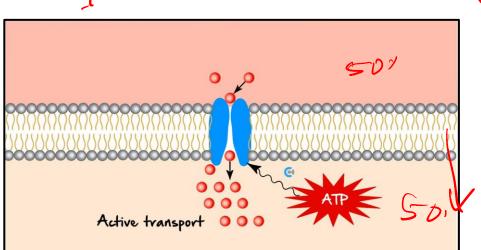


Exploration: Aquaporins

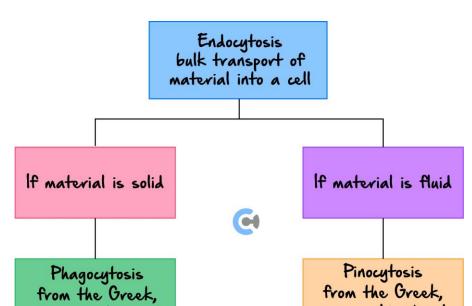

Water moves through a mix of simple and facilitated diffusion - considering its properties why might this be the case?



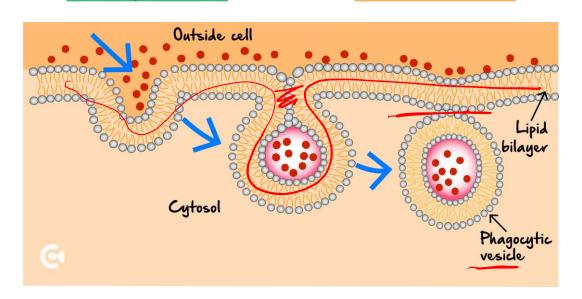

NOTE: 'Active' transport means that this is an energy-requiring process!


Active Transport

Why might this be useful?



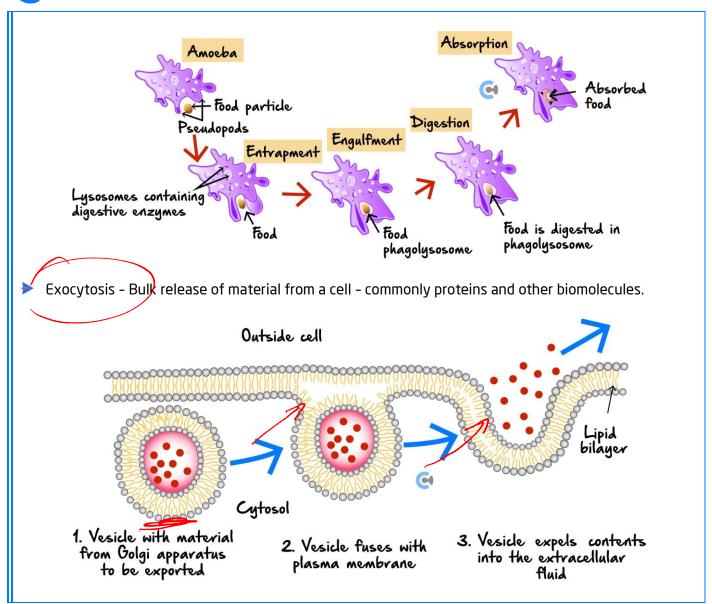
Sub-Section: Bulk Transport


Bulk Transport

Endocytosis - Involves the bulk movement of large materials into the cell.

pinus = 'drinking'

and cyto = 'cell'



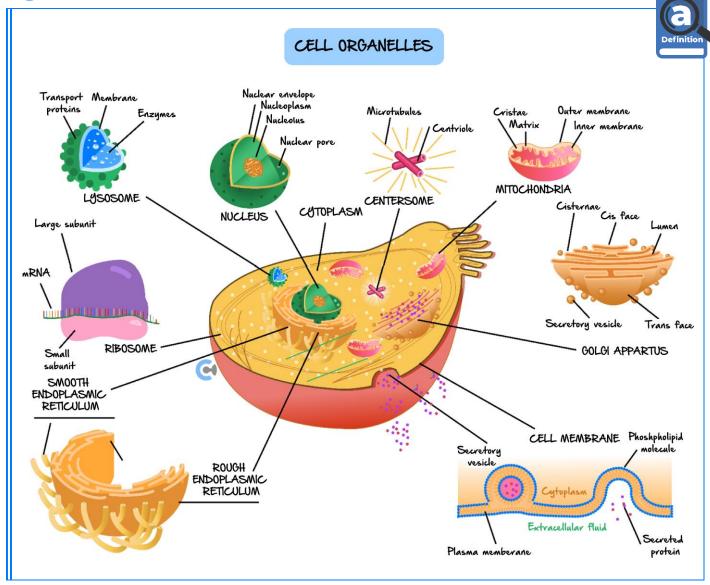
ENDOCY TOSIS

phagos = 'eating'

and cyto = 'cell'

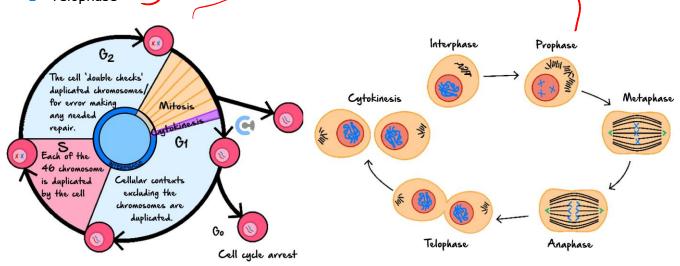
CONTOUREDUCATION

Sub-Section: Organelles


Organelles

- These are present in eukaryotic cells and are membrane-bound to create a separate environment so that they can perform a specific function.
- These are the important ones to know about for VCE Biology:
 - Nucleus
 - Ribosome (technically not an organelle)
 - Mitochondria
 - Chloroplast (only plant cells)
 - Endoplasmic Reticulum
 - Golgi Apparatus

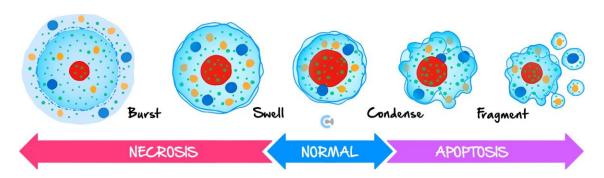
	<u>Organelle</u>	<u>Function</u>	
	اـــــ Nucleus	stores ONA - genetic information	
	1.3 Ribosome	site of proken synthesis	
	2.2 Mitochondria	provides energy by performing respiration	7
	2, Chloroplast	photosynthesis	
1.4	Endoplasmic Reticulum	packages proteins and modifies TRANSPA	pr
	Golgi Apparatus	packager proteins or for export	

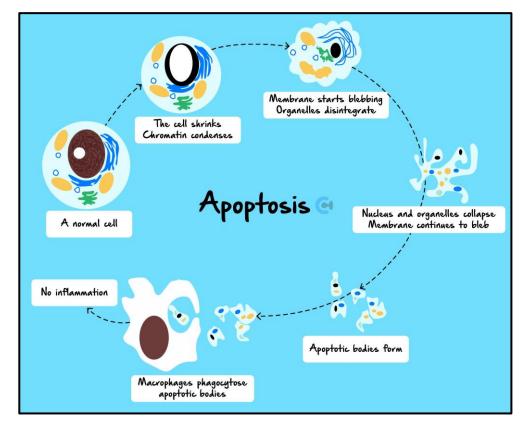


Sub-Section: Cell Division

The Cell Reproductive Cycle

- Eukaryotic cells undergo the process of mitosis:
 - Interphase
 - Prophase
 - Metaphase
 - Anaphase
 - Telophase




Sub-Section: Apoptosis

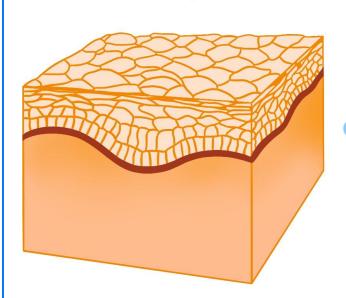
Apoptosis

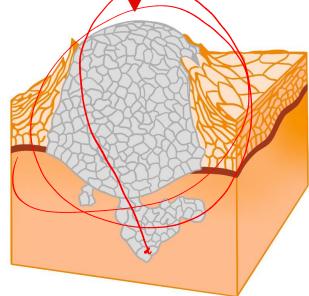
- > Apoptosis <u>Programned all death</u>
 - The cell (for whatever reason) decides to kill itself (or is ordered to).
 - The cytoskeleton breaks down causing the cell to shrink.
 - The cell's contents are packed into little blebs.
 - These are then cleaned up.

Discussion: Why would a cell want to undergo apoptosis?

diserved damaged annewsay

Discussion: What might happen when these processes go wrong?


Cancer Cells



unionfielled cell replication

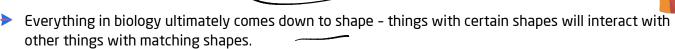
NORMAL CELLS

- This can occur due to an error in the cell cycle, causing the regulation of division to break down.
- Failed apoptosis The body may try to kill the cell, but it no longer responds to such signals.

Normal Cells	Cancerous Cells
The rate of cell division is regulated so that, in a mature organism, cell production matches cell loss.	Mutations in genes that control the cell cycle occur, causing the cell cycle to continue in an unregulated manner.
Checkpoints exist in normal cells to ensure that the DNA that is to be transmitted to daughter cells is complete and error-free.	Checkpoints are overridden or fail.
Chemical signals convey information to cells about when to divide faster and when to slow down or stop dividing. Two kinds of genes are involved in this signalling: proto-oncogenes that signal cells to continue dividing, and tumour-suppressor genes that signal cells to stop dividing.	Mutations in the proto-oncogenes and tumour-suppressor genes disrupt the control of the cell cycle. Mutated proto-oncogenes that lead to cancer are known as oncogenes.
Contact inhibition occurs, which stops cell division if overcrowding occurs.	Contact inhibition does not occur - the cells continue to grow and masses of cells form.

Exploration: How do we treat cancer?

chemotherapy ration removing tumons

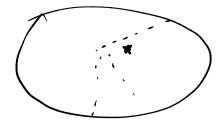

NOTE: Cancer as a specific concept and its treatment is not explored in full depth - however you need to know it when discussing immunotherapy later, so it is really helpful to know HOW cancer kills so that you can better understand how we can HEAL.

Sub-Section: Biology and Shapes

Exploration: How do cells and molecules "know" what to do?

A key idea in biology is that shapes determine function!

For example, let's discuss cellular signalling - i.e. how do cells communicate?


How does a cell in the neck tell your gut to digest?

Space for Personal Notes

cell C

cytasol

